| 研究生: |
蔡儀慧 Tsai, Yi-Hui |
|---|---|
| 論文名稱: |
利用染色體顯微切割技術建立原位基因組定序初探 Preliminary studies on in-situ genome sequencing by chromosome microdissection |
| 指導教授: |
張松彬
Chang, Song-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 全基因組定序 、多重置換擴增 、顯微切割技術 、螢光原位雜交 |
| 外文關鍵詞: | whole genome amplification, MDA, microdissection, fluorescence in situ hybridization |
| 相關次數: | 點閱:143 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著阿拉伯芥被完整解序後,其他植物基因組的定序工程也陸續完成,例如:水稻、玉米、馬鈴薯等。2012年,在多國學者的合作下更完成了蕃茄基因組定序 (真染色質部分) 工作,這項成果更帶動了涵蓋許多經濟作物的茄科植物的研究與發展。若依照傳統定序的方式,必須先建立物種基因庫和遺傳圖譜才能將物種序列進行排序,但基因庫和遺傳圖譜的建構十分耗時。因此若想發展一項新技術,在具備染色體核型圖譜 (karyotyping) 的前提下,單純以顯微切割技術再結合phi29 DNA聚合酶特殊多重置換的機制,使用illustraTM GenomiPhi Amplification kit (GE Healthcare) 達到大量擴增,再將擴增產物進行解序,可省去基因庫與遺傳圖譜建構的時間。為了測定此技術可行性,將顯微切割擴增後的產物 (6L) 運用螢光原位雜交技術 (Fluorescence in situ hybridization) 回標至蕃茄第六條染色體上。實驗結果發現,6L與重複性序列45S rDNA訊號位置重疊,表示6L並非本實驗預期中第六條染色體長臂片段,也意味著對於目標區域進行顯微切割的操作過程中,準確度及穩定性具有決定性因素。因此透過本研究初探,此項技術還有許多改進之處,例如:顯微切割方式、顯微切割用染色體製備和切割後DNA品質的確認等。希望將來可以建立更完整的原位顯微切割技術,解決並改善傳統定序耗時的問題,增進未來對基因組定序的便利性與精確性。
Genomiphi amplification is one of the whole genome amplification (WGA) tools. It work on generating microgram quantities from low copy number DNA or degraded DNA with multiple displacement amplification (MDA) mechanisms of phi29 DNA polymerase. We described an innovation that using microdissection technique combined illustraTM GenomiPhi Amplification kit (GE Healthcare) to solve the obstacles of conventional sequencing in spending time to construct gene library and genetic map. In order to evaluate the feasibility of this strategy, we chose long arm region of tomato chromosome 6 as material for needle-microdissection and reconfirmed WGA-DNA (dissected segment, 6L) by fluorescence in situ hybridization (FISH). According to the results of 6L and 45S rDNA show the same loci, which means that is not expected results. Therefore, the procedure of this strategy needs to be re-examined. We hope improved technique can get more accuracy and convenient for genome sequencing.
李思元和莊以光,DNA定序技術之演進與發展 (2010)
薛豪彥,蘭嶼姬蝴蝶蘭粗絲期染色體螢光原位雜交與核型分析,國立臺灣大學農藝研究所碩士論文 (2012)
Arumuganathan K, and Earle ED. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter, 9(3), 208-218 (1991).
Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, and Salas M. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem, 264(15), 8935-8940 (1989).
Budiman MA, Mao L, Wood TC, and Wing RA. A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Res, 10(1), 129-136 (2000).
Cheng YM, and Lin BY. Cloning and characterization of maize B chromosome sequences derived from microdissection. Genetics, 164(1), 299-310 (2003).
Fluch S, Kopecky D, Burg K, Simkova H, Taudien S, Petzold A, et al. Sequence composition and gene content of the short arm of rye (Secale cereale) chromosome 1. PLoS One, 7(2), e30784 (2012).
Fukushima K, Imamura K, Nagano K, and Hoshi Y. Contrasting patterns of the 5S and 45S rDNA evolutions in the Byblis liniflora complex (Byblidaceae). J Plant Res, 124(2), 231-244 (2011).
John HA, Birnstiel ML, and Jones KW. RNA-DNA hybrids at the cytological level. Nature, 223(5206), 582-587 (1969).
Kubis S, Schmidt T, Heslop-Harrison, and Seymour J. Repetitive DNA elements as a major component of plant genomes. Annals of Botany, 82(suppl 1), 45-55 (1998).
Li YC, Cheng YM, Hsieh LJ, Ryder OA, Yang F, Liao SJ, et al. Karyotypic evolution of a novel cervid satellite DNA family isolated by microdissection from the Indian muntjac Y-chromosome. Chromosoma, 114(1), 28-38 (2005).
Melo CAF, Martins MIG, Oliveira MBM, Benko-Iseppon AM, and Carvalho R. Karyotype analysis for diploid and polyploid species of the Solanum L. Plant Systematics and Evolution, 293(1-4), 227-235 (2011).
Mueller LA, Tanksley SD, Giovannoni JJ, van Eck J, Stack S, Choi D, et al. The Tomato Sequencing Project, the first cornerstone of the International Solanaceae Project (SOL). Comparative and Functional Genomics, 6(3), 153-158 (2005).
Pardue ML, and Gall JG. Molecular hybridization of radioactive dna to the dna of cytological preparations. Proceedings of the National Academy of Sciences, 64(2), 600-604 (1969).
Peterson DG, Stack SM, Price HJ, and Johnston JS. DNA content of heterochromatin and euchromatin in tomato (Lycopersicon esculentum) pachytene chromosomes. Genome, 39(1), 77-82 (1996).
Rajendhran J, and Gunasekaran P. Strategies for accessing soil metagenome for desired applications. Biotechnol Adv, 26(6), 576-590 (2008).
Ramanna MS, and Prakken R. Structure of and homology between pachytene and somatic metaphase chromosomes of the tomato. Genetica, 38(1), 115-133 (1967).
Reimar J, Hermann M, Annabel R, Ranst Mv, and Hans S. Rolling-circle amplification of viral DNA genomes using phi29 polymerase. Trends Microbiol, 17(5), 205-211 (2009).
Richards EJ, and Ausubel FM. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell, 53(1), 127-136 (1988).
Scalenghe F, Turco E, Edstrom JE, Pirrotta V, and Melli M. Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosoma(1981).
Schmidt T, Schwarzacher T, and Heslop-Harrison JS. Physical mapping of rRNA genes by fluorescent in-situ hybridization and structural analysis of 5S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris). Theoretical and Applied Genetics, 88(6-7), 629-636 (1994).
Silander K, and Saarela J. Whole genome amplification with Phi29 DNA polymerase to enable genetic or genomic analysis of samples of low DNA yield. Methods Mol Biol, 439, 1-18 (2008).
Stack SM, Royer SM, Shearer LA, Chang SB, Giovannoni JJ, Westfall DH, et al. Role of fluorescence in situ hybridization in sequencing the tomato genome. Cytogenet Genome Res, 124(3-4), 339-350 (2009).
Sumner AT. Chromosome banding. Unwin Hyman(1990).
Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, and Tunnacliffe A. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics, 13(3), 718-725 (1992).
The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814), 796-815 (2000).
Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641 (2012).
Waminal NE, and Kim H. Dual-color FISH karyotype and rDNA distribution analyses on four Cucurbitaceae species. Horticulture, Environment, and Biotechnology, 53(1), 49-56 (2012).
Waminal NE, Kim N-S, and Kim H. Dual-color FISH karyotype analyses using rDNAs in three Cucurbitaceae species. Genes & Genomics, 33(5), 521-528 (2011).
Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, and Tanksley SD. Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics, 172(4), 2529-2540 (2006).
Weimer. J, Kiechle. M, Senger. G, Wiedemann. U, Ovens-Raeder. A, Schuierer. S, et al. An easy and reliable procedure of microdissection technique for the analysis of chromosomal breakpoints and marker chromosomes. Chromosome research, 7, 355-362 (1999).
Weise A, Timmermann B, Grabherr M, Werber M, Heyn P, Kosyakova N, et al. High-throughput sequencing of microdissected chromosomal regions. Eur J Hum Genet, 18(4), 457-462 (2010).
Zhong X-B, de Jong H, and Zabel P. Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescencein situ hybridization (FISH). Chromosome Research, 4(1), 24-28 (1996).