| 研究生: |
康文豪 Kang, Wun-Hao |
|---|---|
| 論文名稱: |
一維石墨烯超晶格與鄰近化石墨烯中的橫向磁聚焦 Transverse Magnetic Focusing in Spin-Orbit-Coupled Graphene and One-Dimensional Graphene Superlattices |
| 指導教授: |
劉明豪
Liu, Ming-Hao |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 橫向磁聚焦 、鄰近化石墨烯 、石墨烯超晶格 、作用量 |
| 外文關鍵詞: | Transverse magnetic focusing, Proximitized graphene, Graphene superlattices, Classical action |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
橫向磁聚焦測量(TMF)利用垂直於平面的磁場收集注入的載子,已被廣泛用於探測材料的能量色散和研究邊界散射。此外,石墨烯因其良好的遷移率,是一種極具潛力的二維電子裝置材料。為了拓展其應用,人們開始研究功能化石墨烯,包括自旋軌道耦合石墨烯和石墨烯超晶格。本論文回顧並深入探討了我們已發表論文中關於TMF量子模擬的研究,重點關注於近鄰化石墨烯的自旋分裂訊號和Rashba角,以及一維石墨烯超晶格中狄拉克點的複製。此外,在最後一章中,我們闡述如何利用最小作用量原理和劇變理論來描述TMF振盪。
Transverse magnetic focusing measurement (TMF), which collects injected carriers under an out-of-plane magnetic field, has been widely used to probe the energy dispersion of materials and study scattering on boundaries. Additionally, graphene is a promising two-dimensional material for electronic devices due to its high mobility. To broaden its application, functional graphene has been intensively investigated recently, including spin-orbit-coupled graphene and graphene superlattices. In this thesis, we review and thoroughly discuss the quantum simulation of TMF in proximitized graphene, focusing on the spin-splitting signal and Rashba angle, as well as one-dimensional graphene superlattices that demonstrate the cloning of zero modes, all of which were published. Additionally, we illustrate the method for describing TMF oscillations using the principle of least action and catastrophe theory in the last chapter.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669, Oct 2004.
[2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 102(30):10451–10453, Jul 2005.
[3] Lomer W. M. The valence bands in two-dimensional graphite. Proc. R. Soc. Lond. A, 227:220–349, Jan 1955.
[4] Oleg V. Yazyev, Rodrigo B. Capaz, and Steven G. Louie. Theory of magnetic edge states in chiral graphene nanoribbons. Phys. Rev. B, 84:115406, Sep 2011.
[5] Wallace, P. R. The Band Theory of Graphite. Phys. Rev., 71:622–634, May 1947.
[6] N. A. W. Holzwarth, Steven G. Louie, and Sohrab Rabii. X-ray form factors and the electronic structure of graphite. Phys. Rev. B, 26:5382–5390, Nov 1982.
[7] Aaron Bostwick, Taisuke Ohta, Thomas Seyller, Karsten Horn, and Eli Rotenberg. Quasiparticle dynamics in graphene. Nature Physics, 3:36–40, Jan 2007.
[8] Choongyu Hwang, David A. Siegel, Sung-Kwan Mo, William Regan, Ariel Ismach, Yuegang Zhang, Alex Zettl, and Alessandra Lanzara. Fermi velocity engineering in graphene by substrate modification. Scientific Reports, 2:590, Aug 2012.
[9] A. H. Castro Neto and F. Guinea. Impurity-induced spin-orbit coupling in graphene. Phys. Rev. Lett., 103:026804, Jul 2009.
[10] C. L. Kane and E. J. Mele. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett., 95:226801, Nov 2005.
[11] J. C. Boettger and S. B. Trickey. First-principles calculation of the spin-orbit splitting in graphene. Phys. Rev. B, 75:121402, Mar 2007.
[12] M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian. Band-structure topologies of graphene: Spin-orbit coupling effects from first principles. Physical Review B, 80:235431, Dec 2009.
[13] Hongki Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, Leonard Kleinman, and A. H. MacDonald. Intrinsic and rashba spin-orbit interactions in graphene sheets. Phys. Rev. B, 74:165310, Oct 2006.
[14] Daniel Huertas-Hernando, F. Guinea, and Arne Brataas. Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B, 74:155426, Oct 2006.
[15] Yugui Yao, Fei Ye, Xiao-Liang Qi, Shou-Cheng Zhang, and Zhong Fang. Spin-orbit gap of graphene: First-principles calculations. Phys. Rev. B, 75:041401, Jan 2007.
[16] Nikolaos Tombros, Csaba Jozsa, Mihaita Popinciuc, Harry T. Jonkman, and Bart J. van Wees. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature, 448:571–574, Aug 2007.
[17] Völkl, Tobias and Rockinger, Tobias and Drienovsky, Martin and Watanabe, Kenji and Taniguchi, Takashi and Weiss, Dieter and Eroms, Jonathan. Magnetotransport in heterostructures of transition metal dichalcogenides and graphene. Phys. Rev. B, 96:125405, Sep 2017.
[18] Martin Gmitra, Denis Kochan, and Jaroslav Fabian. Spin-orbit coupling in hydrogenated graphene. Phys. Rev. Lett., 110:246602, Jun 2013.
[19] Samir Abdelouahed, A. Ernst, J. Henk, I. V. Maznichenko, and I. Mertig. Spin-split electronic states in graphene: Effects due to lattice deformation, rashba effect, and adatoms by first principles. Phys. Rev. B, 82:125424, Sep 2010.
[20] Conan Weeks, Jun Hu, Jason Alicea, Marcel Franz, and Ruqian Wu. Engineering a robust quantum spin hall state in graphene via adatom deposition. Phys. Rev. X, 1:021001, Oct 2011.
[21] Varykhalov, A. and Sánchez-Barriga, J. and Shikin, A. M. and Biswas, C. and Vescovo, E. and Rybkin, A. and Marchenko, D. and Rader, O. Electronic and Magnetic Properties of Quasifreestanding Graphene on Ni. Phys. Rev. Lett., 101:157601, Oct 2008.
[22] D. Marchenko, A. Varykhalov, M.R. Scholz, G. Bihlmayer, E.I. Rashba, A. Rybkin, A.M. Shikin, and O. Rader. Giant rashba splitting in graphene due to hybridization with gold. Nature Communications, 3:1232, Nov. 2012.
[23] Martin Gmitra, Denis Kochan, Petra Högl, and Jaroslav Fabian. Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transitionmetal dichalcogenides. Phys. Rev. B, 93(15):155104, Apr 2016.
[24] A. Avsar, J. Y. Tan, T. Taychatanapat, J. Balakrishnan, G.K.W. Koon, Y. Yeo, J. Lahiri, A. Carvalho, A. S. Rodin, E.C.T. O'Farrell, G. Eda, A. H. Castro Neto, and B. Özyilmaz. Spin–orbit proximity effect in graphene. Nature Communications, 5:4875, Sep 2014.
[25] Wang, Zhe and Ki, Dong-Keun and Chen, Hua and Berger, Helmuth and MacDonald, Allan H. and Morpurgo, Alberto F. Strong interface-induced spin–orbit interaction in graphene on WS2. Nat Commun, 6(1):8339, Sep 2015.
[26] Wikipedia. Proximity effect (electromagnetism). https://en.wikipedia.org/wiki/Proximity_effect_(electromagnetism).
[27] Daisy Q. Wang, Zeb Krix, Oleg P. Sushkov, Ian Farrer, David A. Ritchie, Alexander R. Hamilton, and Oleh Klochan. Formation of artificial fermi surfaces with a triangular superlattice on a conventional two-dimensional electron gas. Nano Letters, 23(5):1705–1710, Feb 2023.
[28] Yahniuk, I. and Hild, M. and Golub, L. E. and Amann, J. and Eroms, J. and Weiss, D. and Kang, Wun-Hao and Liu, Ming-Hao and Watanabe, K. and Taniguchi, T. and Ganichev, S. D. Terahertz ratchet in graphene two-dimensional metamaterial formed by a patterned gate with an antidot array. Phys. Rev. B, 109:235428, Jun 2024.
[29] Forsythe, Carlos and Zhou, Xiaodong and Watanabe, Kenji and Taniguchi, Takashi and Pasupathy, Abhay and Moon, Pilkyung and Koshino, Mikito and Kim, Philip and Dean, Cory R. Band structure engineering of 2D materials using patterned dielectric superlattices. Nature Nanotechnology, 13, Jul 2018.
[30] Yutao Li, Scott Dietrich, Carlos Forsythe, Takashi Taniguchi, Kenji Watanabe, Pilkyung Moon, and Cory R. Dean. Anisotropic band flattening in graphene with onedimensional superlattices. Nature Nanotechnology, 16:525–530, May 2021.
[31] L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Fal'ko, and A. K. Geim. Cloning of Dirac fermions in graphene superlattices. Nature, 497:594–597, May 2013.
[32] Menyoung Lee, John R. Wallbank, Patrick Gallagher, Kenji Watanabe, Takashi Taniguchi, Vladimir I. Fal'ko, and David Goldhaber-Gordon. Ballistic miniband conduction in a graphene superlattice. Science, 353:1526 – 1529, Sep 2016.
[33] Martinazzo, Rocco and Casolo, Simone and Tantardini, Gian Franco. Symmetryinduced band-gap opening in graphene superlattices. Phys. Rev. B, 81:245420, Jun 2010.
[34] Cheol-Hwan Park, Li Yang, Young-Woo Son, Marvin L. Cohen, and Steven G. Louie. Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials. Nature Physics, 4:213–217, Mar 2008.
[35] Cheol-Hwan Park, Li Yang, Young-Woo Son, Marvin L. Cohen, and Steven G. Louie. New generation of massless dirac fermions in graphene under external periodic potentials. Phys. Rev. Lett., 101:126804, Sep 2008.
[36] Rainer Kraft, Ming-Hao Liu, Pranauv Balaji Selvasundaram, Szu-Chao Chen, Ralph Krupke, Klaus Richter, and Romain Danneau. Anomalous cyclotron motion in graphene superlattice cavities. Phys. Rev. Lett., 125:217701, Nov 2020.
[37] Zhen Zhan, Yonggang Li, and Pierre A. Pantaleón. Designing band structures by patterned dielectric superlattices. Phys. Rev. B, 111:045148, Jan 2025.
[38] M. Beconcini, S. Valentini, R. Krishna Kumar, G. H. Auton, A. K. Geim, L. A. Ponomarenko, M. Polini, and F. Taddei. Scaling approach to tight-binding transport in realistic graphene devices: The case of transverse magnetic focusing. Phys. Rev. B, 94:115441, Sep 2016.
[39] H. van Houten and B. J. van Wees and J. E. Mooij and C. W. J. Beenakker and J. G. Williamson and C. T. Foxon. Coherent Electron Focussing in a Two-Dimensional Electron Gas. Europhysics Letters, 5(8):721, apr 1988.
[40] Taychatanapat, Thiti and Watanabe, Kenji and Taniguchi, Takashi and Jarillo-Herrero, Pablo. Electrically tunable transverse magnetic focusing in graphene. Nature Physics, 9:225–229, Apr 2013.
[41] V. S. Tsoi, J. Bass, and P. Wyder. Studying conduction-electron/interface interactions using transverse electron focusing. Rev. Mod. Phys., 71:1641–1693, Oct 1999.
[42] V S Tsoi and J Bass and P A M Benistant and H van Kempen and E L M Payens and P Wyder. Transverse electron focusing and specular reflection in silver. Journal of Physics F: Metal Physics, 9(11):L221, nov 1979.
[43] L. P. Rokhinson, V. Larkina, Y. B. Lyanda-Geller, L. N. Pfeiffer, and K. W. West. Spin separation in cyclotron motion. Phys. Rev. Lett., 93:146601, Sep 2004.
[44] Christoph W Groth, Michael Wimmer, Anton R Akhmerov, and Xavier Waintal. Kwant: a software package for quantum transport. New Journal of Physics, 16(6):063065, jun 2014.
[45] Supriyo Datta. Electronic Transport in Mesoscopic Systems. Cambridge University Press, 1999.
[46] Nikolić, Branislav K. and Zârbo, Liviu P. and Souma, Satofumi. Imaging mesoscopic spin Hall flow: Spatial distribution of local spin currents and spin densities in and out of multiterminal spin-orbit coupled semiconductor nanostructures. Phys. Rev. B, 73:075303, Feb 2006.
[47] Büttiker, M. and Imry, Y. and Landauer, R. and Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B, 31:6207–6215, May 1985.
[48] Büttiker, M. Four-terminal phase-coherent conductance. Phys. Rev. Lett., 57:1761–1764, Oct 1986.
[49] Büttiker, M. Transmission, Reflection and the Resistance of Small Conductors, pages 51–73. Springer US, Boston, MA, 1990.
[50] Michael A. Gottlieb and Rudolf Pfeiffer. The Schrödinger Equation in a Classical Context: A Seminar on Superconductivity. https://www.feynmanlectures.caltech.edu/III_21.html.
[51] Wikipedia. Peierls substitution. https://en.wikipedia.org/wiki/Peierls_substitution.
[52] J. M. Luttinger. The effect of a magnetic field on electrons in a periodic potential. Phys. Rev., 84:814–817, Nov 1951.
[53] John David Jackson. Classical Electrodynamics. Wiley, 3 edition, 1998.
[54] Wikipedia. Gauge fixing. https://en.wikipedia.org/wiki/Gauge_fixing.
[55] Ulrich D. Jentschura. Algebraic approach to relativistic landau levels in the symmetric gauge. Phys. Rev. D, 108:016016, Jul 2023.
[56] Harold U. Baranger and A. Douglas Stone. Electrical linear-response theory in an arbitrary magnetic field: A new fermi-surface formation. Phys. Rev. B, 40:8169–8193, Oct 1989.
[57] P. E. Allain and J. N. Fuchs. Klein tunneling in graphene: optics with massless electrons. The European Physical Journal B, 83:301, Oct 2011.
[58] Charles Kittlel. Kittel’s introduction to solid state physics. Wiley, 2018.
[59] Neil W. Ashcroft and N. David Mermin. Solid State physics. Holt, 1976.
[60] Martin S. Alnaes, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg, Chris N. Richardson, Johannes Ring, Marie E. Rognes, and Garth N. Wells. The FEniCS project version 1.5. Archive of Numerical Software, 3, 2015.
[61] Anders Logg, Kent-Andre Mardal, Garth N. Wells, et al. Automated Solution of Differential Equations by the Finite Element Method. Springer, 2012.
[62] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, volume 1. McGrawHill Book Company, UK, 1988.
[63] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, May 2009.
[64] Denis Kochan, Susanne Irmer, and Jaroslav Fabian. Model spin-orbit coupling Hamiltonians for graphene systems. Phys. Rev. B, 95:165415, Apr 2017.
[65] Klaus Zollner, Simão M. João, Branislav K. Nikolić, and Jaroslav Fabian. Twist- and gate-tunable proximity spin-orbit coupling, spin relaxation anisotropy, and charge-tospin conversion in heterostructures of graphene and transition metal dichalcogenides. Phys. Rev. B, 108:235166, Dec 2023.
[66] Liu, Ming-Hao and Rickhaus, Peter and Makk, Péter and Tóvári, Endre and Maurand, Romain and Tkatschenko, Fedor and Weiss, Markus and Schönenberger, Christian and Richter, Klaus. Scalable Tight-Binding Model for Graphene. Phys. Rev. Lett., 114(3):036601, Jan 2015.
[67] Priya Tiwari, Mohit Kumar Jat, Adithi Udupa, Deepa S. Narang, Kenji Watanabe, Takashi Taniguchi, Diptiman Sen, and Aveek Bid. Experimental observation of spin−split energy dispersion in high-mobility single-layer graphene/WSe2 heterostructures. npj 2D Materials and Applications, 6:68, Oct 2022.
[68] Qing Rao, Wun-Hao Kang, Hongxia Xue, Ziqing Ye, Xuemeng Feng, Kenji Watanabe, Takashi Taniguchi, Ning Wang, Ming-Hao Liu, and Dong-Keun Ki. Ballistic transport spectroscopy of spin-orbit-coupled bands in monolayer graphene on WSe2. Nature Communications, 14:6124, Sep 2023.
[69] Sun, Lihuan and Rademaker, Louk and Mauro, Diego and Scarfato, Alessandro and Pásztor, Árpád and Gutiérrez-Lezama, Ignacio and Wang, Zhe and Martinez-Castro, Jose and Morpurgo, Alberto F. and Renner, Christoph. Determining spin-orbit coupling in graphene by quasiparticle interference imaging. Nature Communications, 14:3771, Jun 2023.
[70] Dongying Wang, Mohammed Karaki, Nicholas Mazzucca, Haidong Tian, Guixin Cao, ChunNing Lau, Yuan-Ming Lu, Marc Bockrath, Kenji Watanabe, and Takashi Taniguchi. Spin-orbit coupling and interactions in quantum Hall states of graphene/WSe2 heterobilayers. Phys. Rev. B, 104:L201301, Nov 2021.
[71] Bowen Yang, Mark Lohmann, David Barroso, Ingrid Liao, Zhisheng Lin, Yawen Liu, Ludwig Bartels, Kenji Watanabe, Takashi Taniguchi, and Jing Shi. Strong electronhole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures. Phys. Rev. B, 96:041409, Jul 2017.
[72] Simon Zihlmann, Aron W. Cummings, Jose H. Garcia, Máté Kedves, Kenji Watanabe, Takashi Taniguchi, Christian Schönenberger, and Péter Makk. Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/graphene/h-BN heterostructures. Phys. Rev. B, 97:075434, Feb 2018.
[73] Gonzalo Usaj and C. A. Balseiro. Transverse electron focusing in systems with spinorbit coupling. Phys. Rev. B, 70:041301, Jul 2004.
[74] Shun-Tsung Lo, Chin-Hung Chen, Ju-Chun Fan, L. W. Smith, G. L. Creeth, Che-Wei Chang, M. Pepper, J. P. Griffiths, I. Farrer, H. E. Beere, G. A. C. Jones, D. A. Ritchie, and Tse-Ming Chen. Controlled spatial separation of spins and coherent dynamics in spin-orbit-coupled nanostructures. Nature Communications, 8:15997, Jul 2017.
[75] Qing Rao and Hongxia Xue and Dong-Keun Ki. Landau-level Spectrum and the Effect of Spin–Orbit Coupling in Monolayer Graphene on Transition Metal Dichalcogenides. Phys. Status Solidi B, 261, Jan 2024.
[76] Li, Yang and Koshino, Mikito. Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B, 99:075438, Feb 2019.
[77] David, Alessandro and Rakyta, Péter and Kormányos, Andor and Burkard, Guido. Induced spin-orbit coupling in twisted graphene–transition metal dichalcogenide heterobilayers: Twistronics meets spintronics. Phys. Rev. B, 100:085412, Aug 2019.
[78] Safeer, C. K. and Ontoso, Nerea and Ingla-Aynés, Josep and Herling, Franz and Pham, Van Tuong and Kurzmann, Annika and Ensslin, Klaus and Chuvilin, Andrey and Robredo, Iñigo and Vergniory, Maia G. and de Juan, Fernando and Hueso, Luis E. and Calvo, M. Reyes and Casanova, Félix. Large Multidirectional Spin-to-Charge Conversion in Low-Symmetry Semimetal MoTe2 at Room Temperature. Nano Letters, 19(12):8758–8766, Oct. 2019.
[79] Haozhe Yang, Beatriz Martín-García, Jozef Kimák, Eva Schmoranzerová, Eoin Dolan, Zhendong Chi, Marco Gobbi, Petr Němec, Luis E. Hueso, and Fèlix Casanova. Twistangle-tunable spin texture in WSe2/graphene van der Waals heterostructures. Nature Materials, 23:1502–1508, Aug 2024.
[80] Wun-Hao Kang, Michael Barth, Andreas Costa, Aitor Garcia-Ruiz, Alina MreńcaKolasińska, Ming-Hao Liu, and Denis Kochan. Magnetotransport and Spin-Relaxation Signatures of the Radial Rashba and Dresselhaus Spin-Orbit Coupling in Proximitized Graphene. Phys. Rev. Lett., 133:216201, Nov 2024.
[81] Tobias Frank and Jaroslav Fabian. Landau levels in spin-orbit coupling proximitized graphene: Bulk states. Phys. Rev. B, 102:165416, Oct 2020.
[82] Cheol-Hwan Park, Young-Woo Son, Li Yang, Marvin L. Cohen, and Steven G. Louie. Electron Beam Supercollimation in Graphene Superlattices. Nano Letters, 8:2920–2924, Sep 2008.
[83] Cheol-Hwan Park, Young-Woo Son, Li Yang, Marvin L. Cohen, and Steven G. Louie. Landau levels and quantum hall effect in graphene superlattices. Phys. Rev. Lett., 103:046808, Jul 2009.
[84] L. Brey and H. A. Fertig. Emerging zero modes for graphene in a periodic potential. Phys. Rev. Lett., 103:046809, Jul 2009.
[85] Wun-Hao Kang, Szu-Chao Chen, and Ming-Hao Liu. Cloning of zero modes in onedimensional graphene superlattices. Phys. Rev. B, 102:195432, Nov 2020.
[86] Himadri Chakraborti and Cosimo Gorini and Angelika Knothe and Ming-Hao Liu and Péter Makk and François D Parmentier and David Perconte and Klaus Richter and Preden Roulleau and Benjamin Sacépé and Christian Schönenberger and Wenmin Yang. Electron wave and quantum optics in graphene. Journal of Physics: Condensed Matter, 36(393001), Jul 2024.
[87] J. H. Ho, Y. H. Chiu, S. J. Tsai, and M. F. Lin. Semimetallic graphene in a modulated electric potential. Phys. Rev. B, 79:115427, Mar 2009.
[88] Reijnders, K. J. A. and Katsnelson, M. I. Symmetry breaking and (pseudo)spin polarization in Veselago lenses for massless Dirac fermions. Phys. Rev. B, 95:115310, Mar 2017.
[89] Reijnders, K. J. A. and Katsnelson, M. I. Diffraction catastrophes and semiclassical quantum mechanics for Veselago lensing in graphene. Phys. Rev. B, 96:045305, Jul 2017.
[90] Nivaldo A. Lemos. Analytical Mecanics. Cambridge University Press, 2018.
[91] E. C. Zeeman. Catastrophe theory. Scientific American, 234(4):65–83, 1976.
[92] 蕭欣忠 and 呂素齡. 劇變論及其應用. 國立編譯館, 1989.
[93] Lee, Seungjun and de Sousa, D. J. P. and Kwon, Young-Kyun and de Juan, Fernando and Chi, Zhendong and Casanova, Fèlix and Low, Tony. Charge-to-spin conversion in twisted graphene/WSe2 heterostructures. Phys. Rev. B, 106:165420, Oct 2022.
[94] Bladwell, Samuel and Sushkov, Oleg P. Magnetic focusing of electrons and holes in the presence of spin-orbit interactions. Phys. Rev. B, 92:235416, Dec 2015.
[95] Leslie L. Foldy and Siegfried A. Wouthuysen. On the dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev., 78:29–36, Apr 1950.
[96] Franz Schwabl. Advanced Quantum Mechanics. Springer, 3 edition, 2005.
[97] Ramamurti Shankar. Principles of Quantum Mechanics. Plenum press, 2 edition, 1994.
[98] Kwant. Computing local quantities: densities and currents. https://kwantproject.org/doc/1/tutorial/operator.