| 研究生: |
蘇韋 Sourav De |
|---|---|
| 論文名稱: |
應用於類神經網路運算的基於鉿鋯氧化物的超小尺度鐵電鰭式場效電晶體系統和隨機變化的探索和控制 Exploration and Control of Systematic and Stochastic Variation in Hafnium Zirconium Oxide Based Ultra-Scaled Ferroelectric FinFETs for Neuromorphic Computing Applications |
| 指導教授: |
盧達生
Lu, Darsen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 鐵電finFET 、HZO 、隨機變化 、系統變化 、結溫變化 、神經網絡 、神經形態計算 |
| 外文關鍵詞: | Ferroelectric finFET, HZO, Random Variations, Systematic Variations, Junction Temperature Variations, Neural Networks, Neuromorphic computing |
| 相關次數: | 點閱:99 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Instigated by the plethora of data generated by edge devices and IoT devices, machine learning has become the de facto choice of everyone for solving many tasks. The applications like intelligent healthcare monitoring systems, smartwatches, or automatic cars require real-time processing of the data or image, which is done by machine learning algorithms with higher efficiency than humans. There are two possible methods for artificial intelligence.
1. non-Von-Neumann hardware-based implementation of neural networks.
2. traditional computer science base approach for neural networks or traditional Von-Neumann architecture-based implementation of neural networks.
The standard Von-Neumann performance of neural networks, where the memory and the computation parts are segregated, severely suffers from latency with the rising number of edge devices. However, the plethora of usage of edge devices in our daily life foists stringent restrictions on latency, device area, and power consumption for the hard wares. Therefore, we need to take the route beyond CMOS-based mixed-signal implementation of neural networks, where the memory bandwidth is not limited by quintessential Von-Neumann architecture. Recent signs of progress in the research of emerging non-volatile memories have fueled the idea of non-Von-Neumann computing.
This work primarily focuses on increasing the reliability of ferroelectric finFET devices for neuromorphic computing applications. We have adopted a three-way optimization process from semiconductor process, device bias, and system-level optimization. Optimization of semiconductor process led to 3bit/cell operation along with improvement in device endurance. We have further demonstrated that bias optimization combined with process optimization can lead to robust binary neural network operation from -40◦C to 125◦C using Fe-finFET devices as the synapse.
The overall performance of a neuromorphic system results from the confederated performance of the device, peripheral circuits, network architecture, and algorithm. This thesis focuses on optimizing the Fe-finFET based neural network system from all three perspectives, and we conclude that the systematic variation in Fe-finFETs has a more substantial impact than random variation.
[1] P. Chen, X. Peng, and S. Yu. Neurosim+: An integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures. In 2017 IEEE International Electron Devices Meeting (IEDM), pages 6.1.1–6.1.4, 2017.
[2] Sourav De, Aftab Baig, Bo-Han Qiu, Darsen Lu, Yao-Jen Lee, Chun-Jung Su, Po-Jung Sung, and Fu-Kuo Hsueh. Random variation in nanoscale hfzro2 ferroelectric finfets: Physical origin and neuromorphic system implications, 2020.
[3] Qingzhou Wan, Mohammad T. Sharbati, John R. Erickson, Yanhao Du, and Feng Xiong. Emerging Artificial Synaptic Devices for Neuromorphic Computing, 2019.
[4] Abu Sebastian, Manuel Le Gallo, Riduan Khaddam-Aljameh, and Evangelos Eleftheriou. Memory devices and applications for in-memory computing, 2020.
[5] Sabpreet Bhatti, Rachid Sbiaa, Atsufumi Hirohata, Hideo Ohno, Shunsuke Fukami, and S. N. Piramanayagam. Spintronics based random access memory: a review, 2017.
[6] Manuel Le Gallo and Abu Sebastian. An overview of phase-change memory device physics, 2020.
[7] Ja Kyung Lee, Ga Young Shin, Kyung Song, Woo Seok Choi, Yoon Ah Shin, Seong Yong
Park, Jason Britson, Ye Cao, Long-Qing Chen, Ho Nyung Lee, and Sang Ho Oh. Direct observation of asymmetric domain wall motion in a ferroelectric capacitor. Acta Materialia, 61(18):6765–6777, 2013.
[8] C. Kittel. Theory of antiferroelectric crystals. Phys. Rev., 82:729–732, Jun 1951.
[9] Darsen Duane Lu, Sourav De, Mohammed Aftab Baig, Bo-Han Qiu, and Yao-Jen Lee.
Computationally efficient compact model for ferroelectric field-effect transistors to simulate the online training of neural networks. Semiconductor Science and Technology,35(9):095007, jul 2020.
[10] Tanvir H. Morshed, Mohan V. Dunga, Jodie Zhang, Darsen D. Lu, Ali M. Niknejad, and Chenming Hu. Compact modeling of flicker noise variability in small size mosfets. In 2009 IEEE International Electron Devices Meeting (IEDM), pages 1–4, 2009.
[11] Rose Barfield. Who invented computers?, 2020.
[12] Ian J Goodfellow and Aaron Courville Yoshua Bengio. Deep Learning [draft of March 30, 2015]-MIT Press (2016). 2015.
[13] John Sowa, Vivomind Resarch, and Semantic Web. Building Large Knowledge-Based Systems : Representation and Inference in the Cyc Project *. (December), 2014.
[14] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating errors. Nature, 323(6088), 1986.
[15] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,521(7553):436–444, 2015.
[16] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
[17] Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Networks, 1(2):119–130, 1988.
[18] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11):1019–1025, 1999.
[19] N. Mauduit, M. Duranton, J. Gobert, and J.-A. Sirat. Lneuro 1.0: a piece of hardware lego for building neural network systems. IEEE Transactions on Neural Networks, 3(3):414–422, 1992.
[20] Eberhardt, Duong, and Thakoor. Design of parallel hardware neural network systems from custom analog vlsi ’building block’ chips. In International 1989 Joint Conference on Neural Networks, pages 183–190 vol.2, 1989.
[21] P. Mazumder and Y.-S. Jih. A new built-in self-repair approach to vlsi memory yield enhancement by using neural-type circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 12(1):124–136, 1993.
[22] Yutaka Maeda, Hiroaki Hirano, and Yakichi Kanata. A learning rule of neural networks via simultaneous perturbation and its hardware implementation. Neural Networks,8(2):251–259, 1995.
[23] Tayfun Gokmen and Yurii Vlasov. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations. Frontiers in Neuroscience,10:333, 2016.
[24] Stefano Ambrogio, Pritish Narayanan, Hsinyu Tsai, Robert M Shelby, Irem Boybat,Carmelo di Nolfo, Severin Sidler, Massimo Giordano, Martina Bodini, Nathan C P Farinha, Benjamin Killeen, Christina Cheng, Yassine Jaoudi, and Geoffrey W Burr.
Equivalent-accuracy accelerated neural-network training using analogue memory. Nature, 558(7708):60–67, 2018.
[25] J. Bae, S. Lim, B. Park, and J. Lee. High-density and near-linear synaptic device based on a reconfigurable gated schottky diode. IEEE Electron Device Letters, 38(8):1153–1156,2017.
[26] C. Chang, P. Chen, T. Chou, I. Wang, B. Hudec, C. Chang, C. Tsai, T. Chang, and T. Hou. Mitigating asymmetric nonlinear weight update effects in hardware neural network based on analog resistive synapse. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 8(1):116–124, 2018.
[27] P. Chen, B. Lin, I. Wang, T. Hou, J. Ye, S. Vrudhula, J. Seo, Y. Cao, and S. Yu. Mitigating effects of non-ideal synaptic device characteristics for on-chip learning. In 2015
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 194–199, 2015.
[28] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer. Fast-classifying, highaccuracy spiking deep networks through weight and threshold balancing. In 2015 International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2015.
[29] Maxence Ernoult, Julie Grollier, and Damien Querlioz. Using Memristors for Robust Local Learning of Hardware Restricted Boltzmann Machines. Scientific Reports, 9(1):1851,2019.
[30] J. Fu, Z. Liao, N. Gong, and J. Wang. Mitigating nonlinear effect of memristive synaptic device for neuromorphic computing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(2):377–387, 2019.
[31] H. Kim, S. Hwang, J. Park, S. Yun, J. Lee, and B. Park. Spiking neural network using synaptic transistors and neuron circuits for pattern recognition with noisy images. IEEE Electron Device Letters, 39(4):630–633, 2018.
[32] Jinseok Kim, Jongeun Koo, Taesu Kim, and Jae-Joon Kim. Efficient Synapse Memory Structure for Reconfigurable Digital Neuromorphic Hardware. Frontiers in Neuroscience, 12:829, 2018.
[33] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar,W. P. Risk, B. Jackson, and D. S. Modha. Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Transactions on ComputerAided Design of Integrated Circuits and Systems, 34(10):1537–1557, 2015.
[34] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan,Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore,Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy
Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, and Jonathan Ross. In-datacenter performance analysis of a tensor processing unit. 2017.
[35] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing fpga-based accelerator design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 161–170, 2015.
[36] C. M. Osburn and S. I. Raider. The Effect of Mobile Sodium Ions on Field Enhancement Dielectric Breakdown in SiO[sub 2] Films on Silicon. Journal of The Electrochemical Society, 120(10):1369, 1973.
[37] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating errors. Nature, 323(6088), 1986.
[38] Navid Paydavosi, Tanvir Hasan Morshed, Darsen D Lu, Wenwei Morgan Yang, Mohan V Dunga, Xuemei Jane Xi, Jin He, Weidong Liu, M Cao, Xiaodong Jin, Jeff J Ou, Mansun Chan, Ali M Niknejad, and Chenming Hu. BSIM4v4.8.0 MOSFET Model. 2013.
[39] Rohit Batra, Huan Doan Tran, Brienne Johnson, Brandon Zoellner, Paul A Maggard,Jacob L Jones, George A Rossetti, and Rampi Ramprasad. Search for Ferroelectric Binary Oxides: Chemical and Structural Space Exploration Guided by Group Theory and
Computations. Chemistry of Materials, 32(9):3823–3832, 2020.
[40] Vinay Joshi, Manuel Le Gallo, Simon Haefeli, Irem Boybat, S. R. Nandakumar,Christophe Piveteau, Martino Dazzi, Bipin Rajendran, Abu Sebastian, and Evangelos Eleftheriou. Accurate deep neural network inference using computational phase-change memory. Nature Communications, 11(1), 2020.
[41] Geethan Karunaratne, Manuel Le Gallo, Giovanni Cherubini, Luca Benini, Abbas Rahimi, and Abu Sebastian. In-memory hyperdimensional computing. Nature Electronics, 2020.
[42] Stefano Ambrogio, Nicola Ciocchini, Mario Laudato, Valerio Milo, Agostino Pirovano,Paolo Fantini, and Daniele Ielmini. Unsupervised learning by spike timing dependent plasticity in phase change memory (PCM) synapses. Frontiers in Neuroscience,10(MAR), 2016.
[43] Abu Sebastian, Manuel Le Gallo, Geoffrey W. Burr, Sangbum Kim, Matthew Brightsky, and Evangelos Eleftheriou. Tutorial: Brain-inspired computing using phase-change
memory devices. Journal of Applied Physics, 124(11), 2018.
[44] Martin Salinga, Benedikt Kersting, Ider Ronneberger, Vara Prasad Jonnalagadda,Xuan Thang Vu, Manuel Le Gallo, Iason Giannopoulos, Oana Cojocaru-Miredin, Ric- cardo Mazzarello, and Abu Sebastian. Monatomic phase change memory, 2018.
[45] I. Giannopoulos, A. Sebastian, M. Le Gallo, V. P. Jonnalagadda, M. Sousa, M. N. Boon, and E. Eleftheriou. 8-bit Precision In-Memory Multiplication with Projected PhaseChange Memory. In Technical Digest - International Electron Devices Meeting, IEDM, volume 2018-December, 2019.
[46] Wabe W. Koelmans, Abu Sebastian, Vara Prasad Jonnalagadda, Daniel Krebs, Laurent Dellmann, and Evangelos Eleftheriou. Projected phase-change memory devices. Nature Communications, 6, 2015.
[47] Baowei Qiao, Jie Feng, Yunfeng Lai, Yanfei Cai, Yinyin Lin, Tingao Tang, Bingchu Cai, and Bomy Chen. Phase-change memory device using Si-Sb-Te film for low power operation and multibit storage. Journal of Electronic Materials, 36(1), 2007.
[48] F. Arnaud, P. Ferreira, F. Piazza, A. Gandolfo, P. Zuliani, P. Mattavelli, E. Gomiero, G. Samanni, J. Jasse, C. Jahan, J. P. Reynard, R. Berthelon, O. Weber, A. Villaret, B. Dumont, J. C. Grenier, R. Ranica, C. Gallon, C. Boccaccio, A. Souhaite,L. Desvoivres, D. Ristoiu, L. Favennec, V. Caubet, S. Delmedico, N. Cherault, R. Beneyton, S. Chouteau, P. O. Sassoulas, L. Clement, P. Boivin, D. Turgis, F. Disegni, J. L. Ogier, X. Federspiel, O. Kermarrec, M. Molgg, A. Viscuso, R. Annunziata, A. Maurelli, P. Cappelletti, and E. Ciantar. High density embedded PCM cell in 28nm FDSOI technology for automotive micro-controller applications. In Technical Digest - International
Electron Devices Meeting, IEDM, volume 2020-December, 2020.
[49] Huai Yu Cheng, Fabio Carta, Wei Chih Chien, Hsiang Lan Lung, and Matthew J. Brightsky. 3D cross-point phase-change memory for storage-class memory, 2019.
[50] Derchang Kau, Stephen Tang, Ilya V. Karpov, Rick Dodge, Brett Klehn, Johannes A. Kalb, Jonathan Strand, Aleshandre Diaz, Nelson Leung, Jack Wu, Sean Lee, Tim Langtry, Kuo Wei Chang, Christina Papagianni, Jinwook Lee, Jeremy Hirst, Swetha
Erra, Eddie Flores, Nick Righos, Hernan Castro, and Gianpaolo Spadini. A stackable cross point phase change memory. In Technical Digest - International Electron Devices Meeting, IEDM, 2009.
[51] L. Crespi, A. L. Lacaita, M. Boniardi, E. Varesi, A. Ghetti, A. Redaelli, and G. D’Arrigo.Modeling of Atomic Migration Phenomena in Phase Change Memory Devices. In 2015 IEEE 7th International Memory Workshop, IMW 2015, 2015.
[52] Mattia Boniardi, Daniele Ielmini, Simone Lavizzari, Andrea L. Lacaita, Andrea Redaelli, and Agostino Pirovano. Statistics of resistance drift due to structural relaxation in phasechange memory arrays. IEEE Transactions on Electron Devices, 57(10), 2010.
[53] P. Zuliani, A. Conte, and P. Cappelletti. The PCM way for embedded Non Volatile Memories applications. In IEEE Symposium on VLSI Circuits, Digest of Technical Papers,volume 2019-June, 2019.
[54] Shinhyun Choi, Scott H. Tan, Zefan Li, Yunjo Kim, Chanyeol Choi, Pai Yu Chen, Hanwool Yeon, Shimeng Yu, and Jeehwan Kim. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nature
Materials, 17(4), 2018.
[55] J. Valasek. Piezo-electric and allied phenomena in Rochelle salt. Physical Review, 17(4),1921.
[56] Charles Kittel. Introduction to Solid State Physics, 8th edition. Wiley & Sons, New York,NY, 2004.
[57] Dudley A. Buck. Ferroelectrics for Digital Information Storage and Switching. PhD thesis, 1952.
[58] David Bondurant. Ferroelectronic ram memory family for critical data storage. Ferroelectrics, 112(1), 1990.
[59] T. S. Boscke, J. M ¨ uller, D. Br ¨ auhaus, U. Schr ¨ oder, and U. B ¨ ottger. Ferroelectricity in ¨
hafnium oxide thin films. Applied Physics Letters, 99(10), 2011.
[60] Benjamin Max, Michael Hoffmann, Halid Mulaosmanovic, Stefan Slesazeck, and Thomas Mikolajick. Hafnia-based double-layer ferroelectric tunnel junctions as artificial synapses for neuromorphic computing. ACS Applied Electronic Materials, 2(12),2020.
[61] Suraj S Cheema, Daewoong Kwon, Nirmaan Shanker, Roberto dos Reis, Shang-Lin Hsu, Jun Xiao, Haigang Zhang, Ryan Wagner, Adhiraj Datar, Margaret R McCarter, Claudy R Serrao, Ajay K Yadav, Golnaz Karbasian, Cheng-Hsiang Hsu, Ava J Tan,
Li-Chen Wang, Vishal Thakare, Xiang Zhang, Apurva Mehta, Evguenia Karapetrova,Rajesh V Chopdekar, Padraic Shafer, Elke Arenholz, Chenming Hu, Roger Proksch, Ramamoorthy Ramesh, Jim Ciston, and Sayeef Salahuddin. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature, 580(7804):478–482, 2020.
[62] K. Ni, W. Chakraborty, J. Smith, B. Grisafe, and S. Datta. Fundamental understanding and control of device-to-device variation in deeply scaled ferroelectric fets. In 2019 Symposium on VLSI Technology, pages T40–T41, 2019.
[63] J. Valasek. Piezo-electric and allied phenomena in rochelle salt. Phys. Rev., 17:475–481,Apr 1921.
[64] Joseph Valasek. Note on the piezo-electric effect in rochelle salt crystals. Science,65(1679):235–236, 1927.
[65] Gene H. Haertling. Ferroelectric ceramics: History and technology. Journal of the American Ceramic Society, 82(4):797–818, 1999.
[66] Sayeef Salahuddin and Supriyo Datta. Use of negative capacitance to provide voltage
amplification for low power nanoscale devices. Nano Letters, 8(2):405–410, 2008.
[67] Johannes Muller, Tim S. B ¨ oscke, Uwe Schr ¨ oder, Stefan Mueller, Dennis Br ¨ auhaus, Ul- ¨
rich Bottger, Lothar Frey, and Thomas Mikolajick. Ferroelectricity in simple binary zro2 ¨and hfo2. Nano Letters, 12(8):4318–4323, 2012. PMID: 22812909.
[68] M. Jerry, P. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta. Ferroelectric fet analog synapse for acceleration of deep neural network training. In 2017 IEEE International Electron Devices Meeting (IEDM), pages 6.2.1–6.2.4, 2017.
[69] S. Oh, T. Kim, M. Kwak, J. Song, J. Woo, S. Jeon, I. K. Yoo, and H. Hwang. Hfzroxbased ferroelectric synapse device with 32 levels of conductance states for neuromorphic
applications. IEEE Electron Device Letters, 38(6):732–735, 2017.
[70] V. P. Hu, H. Lin, Z. Zheng, Z. Lin, Y. Lu, L. Ho, Y. Lee, C. Su, and C. Su. Split-gate fefet (sg-fefet) with dynamic memory window modulation for non-volatile memory and neuromorphic applications. In 2019 Symposium on VLSI Technology, pages T134–T135,
2019.
[71] Y. Peng, W. Xiao, G. Han, Y. Liu, J. Wu, K. Wang, Y. He, Z. Yu, X. Wang, N. Xu, T. K. Liu, and Y. Hao. Nanocrystal-embedded-insulator (nei) ferroelectric field-effect transistor featuring low operating voltages and improved synaptic behavior. IEEE Electron Device Letters, 40(12):1933–1936, 2019.
[72] W. Chung, M. Si, and P. D. Ye. First demonstration of ge ferroelectric nanowire fet as synaptic device for online learning in neural network with high number of conductance state and gmax/gmin. In 2018 IEEE International Electron Devices Meeting (IEDM),pages 15.2.1–15.2.4, 2018.
[73] M. N. K. Alam, B. Kaczer, L. Ragnarsson, M. Popovici, G. Rzepa, N. Horiguchi, M. Heyns, and J. Van Houdt. On the characterization and separation of trapping and ferroelectric behavior in hfzro fet. IEEE Journal of the Electron Devices Society, 7:855–862, 2019.
[74] S. De, M. A. Baig, B. Qiu, D. Lu, P. Sung, F. K. Hsueh, Y. Lee, and C. Su. Tri-gate ferroelectric fet characterization and modelling for online training of neural networks at room temperature and 233k. In 2020 Device Research Conference (DRC), pages 1–2,2020.
[75] W. Cochran. Crystal stability and the theory of ferroelectricity. Advances in Physics,9(36):387–423, 1960.
[76] Fratini.S and Quemerais. P. Polarization catastrophe in the polaronic wigner crystal. ´ The European Physical Journal B - Condensed Matter and Complex Systems, 29(36):41–49,2002.
[77] Richard Phillips Feynman, Robert Benjamin Leighton, and Matthew Linzee Sands. The Feynman lectures on physics. Addison-Wesley, 1964.
[78] Changyong Oh, Amit Tewari, Kyungkwan Kim, Ulayil Sajesh Kumar, Changhwan Shin, Minho Ahn, and Sanghun Jeon. Comprehensive study of high pressure annealing on the
ferroelectric properties of hf0.5zr0.5o2 thin films. Nanotechnology, 30(50):505204, oct 2019.
[79] Min Hyuk Park, Young Hwan Lee, and Cheol Seong Hwang. Understanding ferroelectric phase formation in doped hfo2 thin films based on classical nucleation theory. Nanoscale, 11:19477–19487, 2019.
[80] Jacopo Frascaroli, Flavio Giovanni Volpe, Stefano Brivio, and Sabina Spiga. Effect of al doping on the retention behavior of hfo2 resistive switching memories. Microelectronic Engineering, 147:104 – 107, 2015. Insulating Films on Semiconductors 2015.
[81] Rezwana Sultana, Karimul Islam, Abhishek Rakshit, Manabendra Mukherjee, and Supratic Chakraborty. Effect of zr doping and lattice oxygen release on the resistive switching properties of zrxhf1xo2-based metal-oxide-semiconductor devices. Microelectronic Engineering, 216:111099, 2019.
[82] Robin Materlik, Christopher Kunneth, Max Falkowski, Thomas Mikolajick, and Alfred ¨ Kersch. Al-, y-, and la-doping effects favoring intrinsic and field induced ferroelectricity in hfo2: A first principles study. Journal of Applied Physics, 123(16):164101, 2018.
[83] Tao Li, Mao Ye, Zhenzhong Sun, Nian Zhang, Wei Zhang, Saikumar Inguva, Chunxiao
Xie, Lang Chen, Yu Wang, Shanming Ke, and Haitao Huang. Origin of Ferroelectricity in Epitaxial Si-Doped HfO2 Films. ACS Applied Materials & Interfaces, 11(4):4139–4144,2019.
[84] Furqan Mehmood, Thomas Mikolajick, and Uwe Schroeder. Lanthanum doping induced structural changes and their implications on ferroelectric properties of hf1xzrxo2 thin film. Applied Physics Letters, 117(9):092902, 2020.
[85] Uwe Schroeder, Claudia Richter, Min Hyuk Park, Tony Schenk, Milan Pesiˇ c, Michael ´ Hoffmann, Franz P G Fengler, Darius Pohl, Bernd Rellinghaus, Chuanzhen Zhou, ChingChang Chung, Jacob L Jones, and Thomas Mikolajick. Lanthanum-Doped Hafnium
Oxide: A Robust Ferroelectric Material. Inorganic Chemistry, 57(5):2752–2765, 2018.
[86] So-Jung Yoon, So-Yeong Na, Seung-Eon Moon, and Sung-Min Yoon. Polarization switching kinetics of the ferroelectric al-doped hfo2 thin films prepared by atomic layer deposition with different ozone doses. Journal of Vacuum Science & Technology B,
37(5):050601, 2019.
[87] Han Joon Kim, Min Hyuk Park, Yu Jin Kim, Young Hwan Lee, Taehwan Moon, Keum Do Kim, Seung Dam Hyun, and Cheol Seong Hwang. A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. Nanoscale,
8(3):1383–1389, 2016.
[88] Patrick D. Lomenzo, Qanit Takmeel, Saeed Moghaddam, and Toshikazu Nishida. Annealing behavior of ferroelectric si-doped hfo2 thin films. Thin Solid Films, 615:139 –144, 2016.
[89] K. Ni, W. Chakraborty, J. Smith, B. Grisafe, and S. Datta. Fundamental understanding and control of device-to-device variation in deeply scaled ferroelectric fets. In 2019 Symposium on VLSI Technology, pages T40–T41, 2019.
[90] J. Liao, B. Zeng, Q. Sun, Q. Chen, M. Liao, C. Qiu, Z. Zhang, and Y. Zhou. Grain
size engineering of ferroelectric zr-doped hfo2 for the highly scaled devices applications.
IEEE Electron Device Letters, 40(11):1868–1871, 2019.
[91] K. Maekawa, T. Yamaguchi, T. Ohara, A. Amo, E. Tsukuda, K. Sonoda, H. Yanagita,
M. Inoue, M. Matsuura, and T. Yamashita. Impact of homogeneously dispersed al nanoclusters by si-monolayer insertion into hf0.5zr0.5o2 film on fefet memory array with tight threshold voltage distribution. In 2019 IEEE International Electron Devices Meeting (IEDM), pages 15.4.1–15.4.4, 2019.
[92] Min Hyuk Park, Han Joon Kim, Yu Jin Kim, Young Hwan Lee, Taehwan Moon, Keum Do Kim, Seung Dam Hyun, Franz Fengler, Uwe Schroeder, and Cheol Seong Hwang. Effect of Zr Content on the Wake-Up Effect in Hf1–xZrxO2 Films. ACS Applied Materials & Interfaces, 8(24):15466–15475, 2016.
[93] M. Hoffmann, U. Schroeder, T. Schenk, T. Shimizu, H. Funakubo, O. Sakata, D. Pohl,
M. Drescher, C. Adelmann, R. Materlik, A. Kersch, and T. Mikolajick. Stabilizing the
ferroelectric phase in doped hafnium oxide. Journal of Applied Physics, 118(7):072006,2015.
[94] Min Hyuk Park, Han Joon Kim, Yu Jin Kim, Woongkyu Lee, Taehwan Moon, and Cheol Seong Hwang. Evolution of phases and ferroelectric properties of thin hf0.5zr0.5o2 films according to the thickness and annealing temperature. Applied Physics Letters,
102(24):242905, 2013.
[95] Michael C. Weinberg, Dunbar P. Birnie, and Vitaly A. Shneidman. Crystallization kinetics and the jmak equation. Journal of Non-Crystalline Solids, 219:89 – 99, 1997. Glass
Crystallization.
[96] L. E. Levine, K. Lakshmi Narayan, and K. F. Kelton. Finite size corrections for the johnson–mehl–avrami–kolmogorov equation. Journal of Materials Research, 12(1):124–132,1997.
[97] Michael C. Weinberg, Dunbar P. Birnie, and Vitaly A. Shneidman. Crystallization kinetics and the jmak equation. Journal of Non-Crystalline Solids, 219:89 – 99, 1997. Glass
Crystallization.
[98] M. H. Lee, P. Chen, S. Fan, Y. Chou, C. Kuo, C. Tang, H. Chen, C. Liao, S.Gu, R. Hong, Z. Wang, K.Chen, S. T. Chang, M. Liao, and K. Li. Ferroelectric al:hfo2 negative capacitance fets. In 2017 IEEE International Electron Devices Meeting (IEDM), pages 23.3.1–23.3.4, 2017.
[99] J. E. Lowther, J. K. Dewhurst, J. M. Leger, and J. Haines. Relative stability of zro2 and hfo2 structural phases. Phys. Rev. B, 60:14485–14488, Dec 1999.
[100] Erich H. Kisi. Influence of hydrostatic pressure on the t→o transformation in mgpsz studied by in situ neutron diffraction. Journal of the American Ceramic Society,
81(3):741–745, 1998.
[101] Taeho Kim, Jinsung Park, Byoung-Ho Cheong, and Sanghun Jeon. Effects of high pressure nitrogen annealing on ferroelectric hf0.5zr0.5o2 films. Applied Physics Letters,
112(9):092906, 2018.
[102] David Lehninger, Ricardo Olivo, Tarek Ali, Maximilian Lederer, Thomas Kampfe, ¨ Clemens Mart, Kati Biedermann, Kati Kuhnel, Lisa Roy, Mahsa Kalkani, and Konrad ¨ Seidel. Back-end-of-line compatible low-temperature furnace anneal for ferroelectric hafnium zirconium oxide formation. physica status solidi (a), 217(8):1900840, 2020.
[103] Saul Estand ´ ´ıa, Nico Dix, Jaume Gazquez, Ignasi Fina, Jike Lyu, Matthew F Chisholm, Josep Fontcuberta, and Florencio Sanchez. Engineering Ferroelectric Hf0.5Zr0.5O2 Thin ´
Films by Epitaxial Stress. ACS Applied Electronic Materials, 1(8):1449–1457, 2019.
[104] Erich H. Kisi, Christopher J. Howard, and Roderick J. Hill. Crystal structure of orthorhombic zirconia in partially stabilized zirconia. Journal of the American Ceramic Society, 72(9):1757–1760, 1989.
[105] Carl E. Montross Gerald Salazar Joe T. Evans, Jr. A piezoelectric mems process with thin ferroelectric film pzt. ISAF-ECAPD, 2010.
[106] Joe T. Evans. Characterizing ferroelectric materials. Radiant Technologies, Inc., 2011.
[107] Dayu Zhou, Jin Xu, Qing Li, Yan Guan, Fei Cao, Xianlin Dong, Johannes Muller, Tony ¨ Schenk, and Uwe Schroder. Wake-up effects in si-doped hafnium oxide ferroelectric thin ¨films. Applied Physics Letters, 103(19):192904, 2013.
[108] Milan Pesiˇ c, Franz Paul Gustav Fengler, Luca Larcher, Andrea Padovani, Tony Schenk, ´ Everett D. Grimley, Xiahan Sang, James M. LeBeau, Stefan Slesazeck, Uwe Schroeder,and Thomas Mikolajick. Physical mechanisms behind the field-cycling behavior of hfo2-based ferroelectric capacitors. Advanced Functional Materials, 26(25):4601–4612, 2016.
[109] C. Y. Kang, P. D. Kirsch, B. H. Lee, H. Tseng, and R. Jammy. Reliability of la-doped hf-based dielectrics nmosfets. IEEE Transactions on Device and Materials Reliability, 9(2):171–179, 2009.
[110] Hoang-Hiep Le, Wei-Chen Hong, Jian-Wei Du, Tsung-Han Lin, Yi-Xiu Hong, I-Hsuan Chen, Wen-Jay Lee, Nan-Yow Chen, and Darsen D. Lu. Ultralow power neuromorphic accelerator for deep learning using ni/hfo2/tin resistive random access memory. In 2020
4th IEEE Electron Devices Technology Manufacturing Conference (EDTM), pages 1–4,2020.
[111] Navid Paydavosi, Tanvir Hasan Morshed, Darsen D Lu, Wenwei Morgan Yang, Mohan V Dunga, Xuemei Jane Xi, Jin He, Weidong Liu, M Cao, Xiaodong Jin, Jeff J Ou, Mansun Chan, Ali M Niknejad, and Chenming Hu. BSIM4v4.8.0 MOSFET Model. 2013.
[112] Eilon Faran and Doron Shilo. Twin motion faster than the speed of sound. Phys. Rev. Lett., 104:155501, Apr 2010.
[113] Jan Van Houdt and Philippe Roussel. Physical model for the steep subthreshold slope in
ferroelectric fets. IEEE Electron Device Letters, 39(6):877–880, 2018.
[114] S. R. Nandakumar, Manuel Le Gallo, Irem Boybat, Bipin Rajendran, Abu Sebastian, and Evangelos Eleftheriou. Mixed-precision architecture based on computational memory
for training deep neural networks. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5, 2018.
[115] Chenming Hu. Modern Semiconductor Devices for Integrated Circuits. 2009.