| 研究生: |
柯浩瑋 Ke, Hao-Wei |
|---|---|
| 論文名稱: |
含吡啶綠色螢光蛋白發光團衍生物的應用:作為質子螢光感測器及銅離子比色計 Applications of a GFP Chromophore with Pyridine Moiety: A Fluorescence-Quenching-Based Proton Sensor and a Colorimetric Copper(II) Sensor |
| 指導教授: |
宋光生
Sung, Kuang-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 綠色螢光蛋白發光團 、質子螢光感測器 、銅離子比色計 |
| 外文關鍵詞: | copper(Ⅱ) sensor, o-DPABDI, proton sensor |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在含有o-DPABDI的乙腈溶液中加入適量質子後會造成螢光淬滅的現象,為了解其機制,我們合成了o-DPABDI、m-DPABDI 以及o-BBDDI,並且比較它們的光物理和化學性質。我們利用吸收光譜及1H-NMR確認基態時質子化的位置,而激發態質子化的位置則由螢光光譜測定,最後結合理論計算解釋螢光淬滅的原因。
從實驗數據可得知o-DPABDI在基態及激發態時,pyridine官能基的鹼性皆是最強的,所以它較傾向與質子結合,且不容易將質子傳遞給aniline及imidazolone官能基。另外,o-DPABDI的結構可以分為兩部分,分別是o-DMABDI及2-methyl pyridine,經由理論計算發現當2-methyl pyridine質子化後,其LUMO能量會低於o-DMABDI的LUMO能量,因此會有光致電子轉移的現象產生(PET),進而造成螢光淬滅。藉由o-DPABDI的結構和加入質子的螢光淬滅現象,其有機會作為質子的螢光感測器。
o-DPABDI除了可以感測質子,也可以在水溶液中作為選擇性良好的銅離子偵測器,具有應用於環境及工業廢水銅離子檢測的潛力,增加了o-DPABDI的應用範疇。
To realize a mechanism of fluorescence quenching of o-DPABDI after adding moderate protons into acetonitrile, we not only synthesized several compounds, including o-DPABDI, m-DPABDI, and o-BBDDI, but also compared their photophysical and chemical properties. We used absorption spectrum and 1H-NMR to determine the protonation site in the ground state, and the protonation site in the excited state was measured by fluorescence spectrum. Besides, the theoretical calculation was used to study the mechanism of fluorescence quenching.
The experimental results showed that the most basic functional group in the o-DPABDI structure was pyridine moiety, so it is more likely to bind with a proton in the ground state. In addition, pyridine is still the most basic functional group in the excited state, so protons would not transfer to aniline or imidazolone moiety. Structure of o-DPABDI could be divided into two parts, the first part was o-MABDI, and the other was methyl pyridine. The computational study results showed the LUMO energy of methyl pyridine would become lower than that of o-DMABDI after protonation, therefore, the photoinduced electron transfer (PET) might occur and cause fluorescence quenching. To sum up, o-DPABDI is capable of controlling fluorescence intensity by adding moderate protons and it can be a proton sensor in acetonitrile.
In addition to being a proton sensor, o-DPABDI can also be a highly selective copper(II) sensor, especially in water solution, so it is capable of detecting copper(II) in the environment or industrial wastewater.
Key words: copper(II) sensor, o-DPABDI, proton sensor
1.Shimomura, O., Angewandte Chemie International Edition 2009, 48, 5590-5602.
2.Shimomura, O., FEBS letters 1979, 104, 220-222.
3.Cody, C. W.; Prasher, D. C.; Westler, W. M.; Prendergast, F. G.; Ward, W. W., Biochemistry 1993, 32, 1212-1218.
4.Chalfie, M., Photochemistry and photobiology 1995, 62, 651-656.
5.Ormö, M.; Cubitt, A. B.; Kallio, K.; Gross, L. A.; Tsien, R. Y.; Remington, S. J., Science 1996, 273, 1392-1395.
6.Grigorenko, B. L.; Krylov, A. I.; Nemukhin, A. V., Journal of the American Chemical Society 2017, 139, 10239-10249.
7.Tsien, R, Y., Annu Rev Biochem 1998, 67, 509-454.
8.Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W. W.; Prasher, D. C., Science 1994, 263, 802-805.
9.Stafforst, T.; Diederichsen, U., Eur. J. Org. Chem. 2007, 899-911.
10.Chen, K. Y.; Cheng, Y. M.; Lai, C. H.; Hsu, C. C.; Ho, M. L.; Lee, G. H.; Chou, P. T., Journal of the American Chemical Society 2007, 129, 4534-4535.
11.Yang, J. S.; Huang, G. J.; Liu, Y. H.; Peng, S. M., Chemical communications 2008, 1344-1346.
12.Chen, Y. H.; Lo, W. J.; Sung, K., The Journal of Organic Chemistry 2013, 78, 301-310.
13.Lakowicz, J. R. (2006): Principles of fluorescence spectroscopy. Springer.
14.Liu, M.; Yu, X.; Li, M.; Liao, N.; Bi, A.; Jiang, Y.; Liu, S.; Gong, Z.; Zeng, W., RSC advances 2018, 8, 12573-12587.
15.Wang, B.; Fu, T.; Yang, S.; Li, J.; Chen, Y., Analytical Methods 2013, 5, 3639-3641.
16.De Silva, A. P.; Moody, T. S.; Wright, G. D., Analyst 2009, 134, 2385-2393.
17.Sedgwick, A. C.; Wu, L.; Han, H.-H.; Bull, S. D.; He, X.-P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J., Chemical Society Reviews 2018, 47, 8842-8880.
18.Hong, Y.; Lam, J. W.; Tang, B. Z., Chemical communications 2009, 4332-4353.
19.Renny, J. S.; Tomasevich, L. L.; Tallmadge, E. H.; Collum, D. B., Angewandte Chemie International Edition 2013, 52, 11998-12013.
20.Wu, X.; Niu, Q.; Li, T.; Cui, Y.; Zhang, S., Journal of Luminescence 2016, 175, 182-186.
21.Skoog, D. A.; Holler, F. J.; Crouch, S. R. (2013): Fundamentals of Analytical Chemistry, 9th.