| 研究生: |
林榮信 Lin, Rong-Sin |
|---|---|
| 論文名稱: |
含銅碳鋼於氯化鈉水溶液中之腐蝕性質研究 Corrosion behavior of copper-containing carbon steels in NaCl solution |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 含銅碳鋼 、浸泡試驗 、動電位極化曲線 、交流阻抗頻譜 |
| 外文關鍵詞: | coppering-containing steels, immersion test, potentiodynamic polarization curves, electrochemical impedance spectroscopy |
| 相關次數: | 點閱:147 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係探討銅的添加對碳鋼於3.5 wt% NaCl水溶液中之耐蝕性的影響,以浸泡試驗計算其腐蝕重量損失,利用動電位極化曲線及交流阻抗頻譜量測以了解其電化學耐蝕性質,並利用X光繞射分析儀(X-ray diffraction, XRD)及X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS)分析定電位測試後表面腐蝕產物之結晶結構與化學組態。
浸泡試驗結果顯示,在酸性溶液中,不含銅之SS400有最大的腐蝕重量損失,且隨著Cu含量的增加,其重量損失也隨之下降;在中性及鹼性溶液中,SS400仍有較高之腐蝕量,顯示銅的添加可降低碳鋼之重量損失,且在此環境中,重量損失量並未隨銅含量的增加而明顯減少。動電位極化曲線量測結果指出,腐蝕電位(corrosion potential, Ecorr)不因鋼材銅含量不同而改變,但會隨pH值增加而減小,且含銅碳鋼相較於SS400有較低之陽極電流密度,而當pH值大於10時,於陽極區皆可見鈍化現象。交流阻抗頻譜分析(electrochemical impedance spectroscopy, EIS)結果顯示,在pH = 2之條件下,隨著碳鋼含銅量增加,其極化阻抗(polarization resistance, Rp)可由130 ohm-cm2增加至958 ohm-cm2;於pH = 12之情況下,含有4.5 wt% Cu之碳鋼其阻抗可達3166 ohm-cm2,且當溶液pH值提升,鋼材之阻抗值也隨之提升。此外,施加定電位於-0.7 VSCE持續30分鐘後由XPS分析結果發現,含銅碳鋼表面含有鐵的氧化物、銅及銅的氧化物。綜合上述研究成果,銅的添加有助提升於碳鋼在3.5 wt% NaCl水溶液中之耐蝕性質,尤以酸性條件下,有更加明顯之趨勢。
The corrosion behavior of Cu-containing carbon steels in various acidity 3.5 wt% NaCl solution was investigated. By immersion test to calculated the weight loss. The properties of electrochemical corrosion behavior were obtained from potentiodynamic polarization curves and electrochemical impedance spectroscopy. The corrosion products’ crystal structure and chemical bonding energy after potentiostat testing obtained from the X-ray diffraction and X-ray photoelectron spectroscope.
The immersion test showed that the weight loss of SS400 steel was higher than that of Cu-containing carbon steels in acidic solution. The weight loss of the Cu-containing carbon steels is decreased with increasing Cu content of the carbon steel. Furthermore, the weight loss of SS400 steel was still higher than that of Cu-containing carbon steels in neutral or basic solution. Potentiodynamic polarization curves showed that the corrosion potential (Ecorr) of Cu-containing carbon steels did not change greatly by adding various Cu content in carbon steel. However, the corrosion potential of Cu-containing carbon steels decreased as the pH value of solution increased. In case of anodic region, the anodic current density of Cu-containing carbon steels was lower than that of SS400 steel. There was a passivation region could be observed in the anodic curves with the pH value of solution was more than 10. The electrochemical impedance spectroscopy (EIS) results indicated that the polarization resistance (Rp) of Cu-containing carbon steel varied from 130 ohm-cm2 to 958 ohm-cm2, depending on the Cu content, in acidic solution (pH = 2). On the other hand, the results also shows that the Rp was increased as the solution pH increased. A significant increase in Rp (3166 ohm-cm2) could be obtained for 4.5 wt% Cu in carbon steel, in basic solution (pH = 12). After potentiostatic test at -0.7 VSCE for 30 minutes, iron oxide, Cu oxide and Cu could be formed on the Cu-containing carbon steels, as confirmed by X-ray photoelectron spectroscopy (XPS) analysis According to the results, the corrosion resistance could be improved by adding Cu element for carbon steels in 3.5 wt% NaCl solution, especially under acidic solution.
1. R. H. McCuen and P. Albrecht, “Effect of Alloy Composition on Atmospheric Corrosion of Weathering Steel”, Journal of Materials in Civil Engineering, Vol. 17 (2005) 117-125.
2. J. W. Qiu, V. Thiyagarajan, S. Cheung and P. Y. Qian, “Toxic Effects of Copper on Larval Development of the Barnacle Balanus Amphitrite ”, Marine Pollution Bulletin, Vol. 51 (2005) 688-693.
3. M. Perez, G. Blustein, M. Garcia, B. D. Amo and M. Stupak, “Cupric Tannate: A Low Copper Content Antifouling Pigment”, Progress in Organic Coatings, Vol. 55 (2006) 311-315.
4. Y. P. Rao, V. U. Devi and D. G. V. P. Rao, “Copper Toxicity in Tropical Barnacles, Balanus Amphitrite and Balanus Tintinnabulum”, Water , Air and Soil Pollution, Vol. 27 (1986) 109-115.
5. W. H. Lang, R. B. Forward, D. C. Miller and M. Marcy, “Acute Toxicity and Sublethal Behavioral Effects of Copper on Barnacle Nauplii”, Marine Biology, Vol. 58 (1980) 139-145.
6. E. E. Oguzie, J. Li, Y. Liu, D. Chen, Y. Li, K. Yang and F. Wang, “Electrochemical Corrosion Behavior of Novel Cu-containing Antimicrobial Austenitic and Ferritic Stainless Steels in Chloride Media”, Journal of Materials Science, Vol. 45 (2010) 5902-5909.
7. E. Williams and M. E. Komp, “Effect of Copper Content of Carbon Steel on Corrosion in Sulfuric Acid”, Corrosion, Vol. 21 (1965) 9-21.
8. H. Geng, X. Wu, H. Wang and Y. Min, “Effects of Copper Content on the Machinability and Corrosion Resistance of Martensitic Stainless Steel”, Journal of Materials Science, Vol. 43 (2008) 83-87.
9. J. H. Hong, S. H. Lee, J. G. Kim and J. B. Yoon, ”Corrosion Behavior of Copper Containing Low Alloy Steels in Sulphuric Acid”, Corrosion Science, Vol. 54 (2012) 174-182.
10. J. K. Kim, A. Nishikata and T. Tsuru, “Influence of Copper on Iron Corrosion on Iron Corrosion in Weakly Alkaline Environment Containing Chloride Ions”, Materials Transactions, Vol. 44, No. 3 (2003) 396-400.
11. J. K. Kim, “An Electrochemical Study on the Effect of Pitting Inhibition in Weakly Alkaline Solution by Copper Addition in Pure Iron”, Metals and Materials International, Vol. 9, No. 1 (2003) 47-51.
12. Y. S. Choi, J. J. Shim and J. G. Kim, “Effects of Cr, Cu, Ni and Ca on The Corrosion Behavior of Low Carbon Steel in Synthetic Tap Water”, Journal of Alloys and Compounds, Vol. 391 (2005) 161-169.
13. G. C. Liu, J. H. Jun, E. H. Han and K. Wei, “Progress in Research on Rust Layer of Weathering Steel”, Corrosion Science and Protection Technology, Vol. 18 (2006) 268-272.
14. C. Wang and Z. Qi, “Chemical Composition and Property of Atmospheric Corrosion Steels”, Special Steel, Vol. 18 (1997) 13-19.
15. F. Farelas, M. Galicia, B. Brown, S. Nesic and H. Castaneda, “Evolution of Dissolution Processes at the Interface of Carbon Steel Corroding in a CO2 Environment studied by EIS“, Corrosion Science, Vol. 52 (2010) 509-517.
16. G. Moretti, F. Guidi and G. Grion, “Tryptamine as a Green Iron Corrosion Inhibitor in 0.5 M Deaerated Sulphuric Acid”, Corrosion Science, Vol. 46 (2004) 387-403.
17. U. R. Evans, “An Introduction to Metallic Corrosion”, Edward Arnold Ltd., (1960) 56.
18. J. Yuan, L. Wen and W. Shen, “The Effect of Copper on the Anodic Dissolution Behaviour of Austenitic Stainless Steel in Acidic Chloride Solution”, Corrosion Science, Vol. 33 (1992) 851-859.
19. M. Seo, G. Hultquist, C. Leygraf and N. Sato, “The Influence of Minor Alloying Elements (Nb, Ti and Cu) on the Corrosion Resistivity of Ferritic Stainless Steel in Sulfuric Acid Solution”, Corrosion Science, Vol. 26 (1986) 949-960.
20. T. Ujiro, S. Satoh, R. W. Staehle and W. H. Smyrl,”Effect of Alloying Cu on the Corrosion Resistance of Stainless Steels in Chloride Media”, Corrosion Science, Vol.43 (2001) 2185-2200.
21. J. Banas and A. Mazurkiewicz, “The Effect of Copper on Passivity and Corrosion Behaviour of Ferritic and Ferritic-Austenitc Stainless Steels”, Materials Science and Engineering, Vol. A277 (2000) 183-191.
22. A. Pardo, M. C. Merino, M. Carboneras, F. Viejo, R. Arrabal and J. Munoz, “Influence of Cu and Sn Content in the Corrosion of AISI 304 and 316 Stainless Steels in H2SO4”, Corrosion Science, Vol. 48 (2006) 1075-1092.
23. H. T. Lin, W. T. Tsai, J. T Lee and C. S. Huang, “The Electrochemical and Corrosion Behavior of Austenitic Stainless Steel Containing Cu”, Corrosion Science, Vol. 33 (1992) 691-697.
24. M. Sugiyama, T. Hara and H. Asahi, “Roles of Copper and Nickel in 13%Cr Stainless Steel for Improvement of Wet Carbon Dioxide Corrosion Resistance”, Corrosion, Vol. 57 (2001) 777-786.
25. Y. Y. Chen, H. J. Tzeng, L. I. Wei, L. H. Wang, J. C. Oung and H. C. Shih, “Corrosion Resistance and Mechanical Properties of low-alloy Steels under Atmospheric Conditions”, Corrosion Science, Vol. 47 (2005) 1001-1021.
26. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano and T. Misawa, “The Long Term Growth of the Protective Rust Layer Formed on Weathering Steel by Atmospheric Corrosion During a Quarter of a Century”, Corrosion Science, Vol. 36 (1994) 283-299.
27. M. Stratmann, K. Bohnenkamp and T. Ramchandran, “The Influence of Copper upon the Atmospheric Corrosion of Iron”, Corrosion Science, Vol. 27 (1987) 905-926.
28. D.A. Jones, “Principles and Prevention of Corrosion”, 2nd ed., Prentice-Hall, NJ (1996) 76.
29. G. F. V. Voort, “Metallography-Principles and Practice”, 1st ed., McGraw-Hill Book Company, (1984) 632-655.
30. ASTM G1-03, “Standard Practice for Preparing, Cleaning, and Evaluation Corrosion Test Specimens”, (2011).
31. F. A. Shunk, “Constitution of Binary Alloys Second Supplement”, McGraw-Hill Book Company, (1969) 287-289.
32. P. M. Hansen, “Constitution of Binary Alloys”, 2nd ed., McGraw-Hill Book Company, (1958) 2058-2060.
33. T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, ”Binary Alloy Phase Diagrams”, 2nd ed., The Japan Institute of Metals, Vol. 2 (1990) 1408-1410.
34. J. R. Davis, S. D. Henry, B. R. Sanders, N. Hrivnak, J. A. Kinson and W. W. Scott, “ASM Specialty Copper and Copper Alloys”, 1st ed., ASM International, (2001) 372.
35. Y. J. Lu, R. M. Tian, J. Zhou and F. Xue, “Influence of deformation processing on mechanical and conductivity properties of Cu-Fe composites”, The Chinese Journal of Nonferrous Metals, Vol. 19 (2009) 1480-1487.
36. H. B. Li, A. X. He, L. Cao, J. Yang and X. R. Li, “Research on Characteristics and Applications of Cu/Fe Composite Powder”, Sichuan Nonferrous Metals, Vol. 1 (2005) 18-21.
37. P. R. Roberge, “Corrosion Egnineering-Principles and Practice”, 1st ed., The Mc-Graw Hill Companies, (2008) 83-84.