簡易檢索 / 詳目顯示

研究生: 徐偉盛
Hsu, Wei-sheng
論文名稱: 以分子動力學及原子力顯微鏡估測單壁奈米碳管之楊氏係數
Predictions of Young’s Modulus of Single-Walled Carbon Nanotubes by Molecular Dynamics and Atomic Force Microscopy
指導教授: 胡潛濱
Hwu, Chyanbin
鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 119
中文關鍵詞: 單壁奈米碳管管束型單壁奈米碳管分子動力學原子力顯微鏡楊氏係數
外文關鍵詞: Young’s modulus., Single-walled carbon nanotubes, Molecular dynamics, Atomic force microscopy, Ropes of single-walled carbon nanotubes
相關次數: 點閱:142下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用分子動力學(MD)模擬,針對單壁奈米碳管之軸向楊氏係數進行估測。MD模擬過程中使用了<NPT>系綜平均準則COMPASS勢能函數,使用其模擬碳管在不同的外加應力場下以100 ps模擬時間步階且截斷半徑設為9.5 Å內,得三斜晶系之單壁奈米碳管晶格軸向平均伸長量及分子應變能,進而求取應變值及應變能與應變之二次曲線方程式。後處理計算是以彈性力學理論之古典力法與應變能與應變關係兩種方法,分別得到各種直徑與幾何之下單壁奈米碳管軸向楊氏係數。本研究所推導之扶手椅、鋸齒以及螺旋型單壁奈米碳管軸向楊氏係數範圍分別介於1.004~1.06 TPa0.97~1.037 TPa與1.0089~1.059 TPa,與文獻中的理論值1.0~1.2 TPa,比較其誤差在20 %以內。管束型單壁奈米碳管方面,因管束間之凡德瓦爾力造成管束晶格內排列的不完美,而導致管束型單壁奈米碳管之軸向楊氏係數下降,模擬出的軸向楊氏係數隨管束直徑與數目增加而減少,推導結果介於0.989±0.07 TPa之間,與文獻結果0.978±0.05 TPa,比較其誤差在20 %以內。
    本研究亦使用原子力顯微鏡(AFM)估測管束型單壁奈米碳管之楊氏係數。過程中,因碳管表面化學組成為碳-碳部分雙鍵結之類苯環結構,故原料需經酸洗改質以破壞碳管表面鍵結,產生-COOH官能基(羧基),-COOH含量的提昇會使碳管於浸沒之乙醇溶劑中親水性增加而不易團簇。運用AFM之接觸式與輕拍式探針交錯搜尋與量測,對管束型單壁奈米碳管定點施予奈米等級之集中作用力,可得管束碳管之作用力與彎曲變形量,經計算可得管束型單壁奈米碳管之楊氏係數,其實驗結果介於0.301~1.034 TPa,其結果與誤差範圍與文獻比較均於50 %之範圍內。最後,亦將AFM實驗值與MD模擬值比較,可發現實驗量測值與數值預測頗為一致。

    In this study, molecular dynamics simulation has been performed to determine the axial Young’s modulus of the single-walled carbon nanotubes(SWCNTs) and the ropes of single-walled carbon nanotubes as well. Cases considered in the present study involve the armchair, zigzag, chiral and ropes of SWCNTs. The molecular dynamics simulation with <NPT> ensemble is performed at constant pressure and temperature. The forcefield among the molecules is prescribed by the COMPASS potential. Based on the data of the elongation of the length of the carbon nanotubes crystals under external stress, the strain and the potential energy of SWCNTs could be derived for different geometrical conditions. Then, the values of axial Young’s modulus can be obtained by two methods of elasticity mechanics, namely, the classical mechanics and the energy methods. Results show that the obtained axial Young’s modulus of zigzag, armchair and chiral SWCNTs are among 1.004 to 1.06 TPa, 0.97 to 1.037 TPa and 1.0089 to 1.059 TPa respectively, and their ropes are in general varied in the range of 0.989±0.07 TPa. The predictions and error ranges are in close agreement with the existing information.
    In this study, atomics force microscopy (AFM) also has been used to measure the Young’s modulus of ropes of SWCNTs. Since the surface structure of the SWCNTs is referred to the C-C partial double bonds, in order to improve the hydrophilicity of SWCNTs, the acid treatment has been performed to weaken the bonding between carbon atoms to increase the amount of -COOH in the samples. The structure of ropes of SWCNTs after acid treatment is observed by high resolution transmission electron microscopy and field emission scanning electron microscopy. Base on the obtained data of force and deflection by AFM, the Young’s modulus of ropes of SWCNTs has been derived. Results show that the Young’s modulus of ropes of SWCNTs is in general varied in the range of 0.301 to 1.034 TPa, which agrees closely with the predictions by the molecular dynamics simulation.

    致謝 摘要 英文摘要 目錄………………………………………………………………………i 表目錄…………………………………………………………………iii 圖目錄……………………………………………………………………v 符號說明……………………………………………………………viii 第一章 緒論…………………………………………………………1 1.1 前言…………………………………………………………1 1.2 文獻回顧……………………………………………………1 1.2.1 分子動力學於奈米碳管之力學模擬………………1 1.2.2 原子力顯微鏡於奈米碳管之力學量測……………3 1.3 研究方向……………………………………………………3 1.4 本文架構……………………………………………………4 第二章 奈米碳管的結構、特性與應用……………………………5 2.1 單壁與管束型奈米碳管結構………………………………5 2.2 凡德瓦爾力…………………………………………………7 2.3 單壁奈米碳管的特性與應用………………………………8 第三章 分子動力學基本原理與假設………………………………10 3.1 分子動力學基本假設………………………………………10 3.2 分子間作用力與勢能函數…………………………………11 3.3 截斷勢能函數………………………………………………12 3.4 週期性邊界條件與系綜平均的選取………………………12 3.6 原子級應力表示式…………………………………………13 第四章 數值計算方法………………………………………………15 4.1 單壁與管束型奈米碳管物理模型…………………………15 4.2 勢能函數的選擇……………………………………………15 4.3 碳原子位置排列最佳化與初始速度之決定………………17 4.4 控制溫度與壓力的方法……………………………………19 4.5 作用力的計算………………………………………………21 4.6 模擬流程……………………………………………………22 第五章 力學性質之估測……………………………………………23 5.1 扶手椅型單壁奈米碳管軸向楊氏係數估測………………23 5.2 鋸齒型單壁奈米碳管軸向楊氏係數估測…………………26 5.3 螺旋型單壁奈米碳管軸向楊氏係數估測…………………26 5.4 管束型單壁奈米碳管軸向楊氏係數估測…………………27 5.5 凡德瓦爾力於管束型單壁奈米碳管力學性質之影響……29 第六章 原子力顯微鏡估測管束型單壁碳管楊氏係數……………31 6.1 原子力顯微鏡成像原理……………………………………31 6.2 實驗規劃與方式……………………………………………33 6.2.1 碳管酸洗原理與方法………………………………33 6.2.2 結構試片製程………………………………………36 6.3 原子力顯微鏡於管束型單壁奈米碳管之量測……………36 6.4 後處理計算…………………………………………………38 第七章 結論…………………………………………………………40 參考文獻……………………………………………………………… 42 附表…………………………………………………………………… 47 附圖…………………………………………………………………… 74 自述…………………………………………………………119

    [1]Iijima, S., ”Helical microtubules of graphitic carbon,” Nature, Vol. 354, P. 56, 1991.
    [2]Bethune, D. S., Klang, C. H., ”Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, Vol. 363, P. 605, 1993.
    [3]Lu, J. P., ”Elastic properties of carbon canotube and nanoropes,” Physical review letters, Vol. 79, P. 1297, 1997.
    [4]Tersoff, J., ”Empirical interatomic potential for carbon, with applications to amorphous carbon,” Physical review letters, Vol. 61, P. 2879, 1988.
    [5]Hernandez, E., Goze, C., Bernier, P., Rubio, A., ”Elastic properties of C and BxCyNz composite nanotubes,” Physical review letters, Vol. 80, P. 4502, 1998.
    [6]Alonsoel, et al., ”Tight binding molecular dynamics studies of boron assisted nanotube growth,” Journal of chemical physics, Vol. 113, P. 3814, 2000.
    [7]Wen, X. B., Chang, C. Z., ”Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics,” Physica B:Condensed matter, Vol. 352, P. 156, 2004.
    [8]Agrawal, P. M., et al., ”A comparison of different methods of Young's modulus determination for single-wall carbon nanotubes (SWCNT) using molecular dynamics (MD) simulations,” Computational materials science, Vol. 38, P. 271, 2006.
    [9]Fu, C. X., Chen, Y. F., Jiao, J. W., ”Molecular dynamics simulation of the test of single-walled carbon nanotubes under tensile loading,” Science in China series E:Technological Sciences, 2007.
    [10]Salvetat, J. P., Bonard, J. M., ”Mechanical properties of carbon nanotubes,” Applied physics A, Vol. 69, P. 255, 1999.
    [11]Salvetat, J. P., Briggs, G. A., ”Elastic and shear moduli of single-walled carbon nanotube ropes,” Physical review letters, Vol. 82, P. 944, 1999.
    [12]Walters, D., Ericson, L. M., Casavant M. J., Liu, J., Colbert, D. T., Smith, K. A., Smalley, R. E., ”Elastic strain freely suspended single-walled carbon nanotube rope,” Applied physics letter, Vol. 74, P. 3803, 1999.
    [13]Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., Ruoff, R. S., ”Carbon nanotubes under tensile load,” Science, Vol. 287, P. 637, 2000.
    [14]Qian, D., Wagner, G. J., Liu, W. K., Yu, M. F., Ruoff, R. S., ”Mechanical properties of carbon nanotube,” Apply mechanics review, Vol. 55, P. 495, 2002.
    [15]Saito, S., Dresselhaus, G., Dresselhaus, M. S., ”Physics of carbon nanotubes,” Carbon, Vol. 33, P. 883, 1995.
    [16]黃致華,奈米碳管力學性之預估,國立成功大學航空太空研究所碩士論文,2005。
    [17]Salvetat, J. P., Briggs, G. A. D., ”Elastic and shear moduli of single-walled carbon nanotube ropes,” Physical review letters, Vol. 82, P. 944, 1999.
    [18]Lennard-Jones, J. E., ”The determination of molecular fields:from the variation of the viscosity of a gas with temperature,” Proceedings of the royal microscopical society, Vol. 106A, P. 441, 1924.
    [19]Jason, H., Andrew, G., Daniel, T., ”Nanotube as nanoprobe in scanning probe microscopy,” Nature, Vol. 384, P. 147, 1996.
    [20]Lim, D. S., ”Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites,” Wear, Vol. 252, P. 512, 2002.
    [21]鄭金祥,張秀文,單壁奈米碳管儲氫性能之分子動力學模擬,第十四屆全國計算流體力學學術研討會論文集,南投、溪頭, 2007。
    [22]Kirkwood, J. G., Irving, J. H., ”The statistical mechanical theory of transport processes,” Journal of chemical physics, Vol. 18, P. 817, 1950.
    [23]李傳昇,以量子分子動力學方法研究單層奈米碳管之成長,國立成功大學機械工程研究所碩士論文,2002。
    [24]陳道隆,以分子動力學模擬奈米級微結構之拉伸、壓縮、扭轉變型機制,國立成功大學機械工程研究所碩士論文,2001。
    [25]葉建南,以分子動力學方法研究奈米碳管金屬基複合材料之機械性質研究,國立中正大學機械工程研究所碩士論文,2006。
    [26]Krishnan, A., Dujardin, E., ”Young's modulus of single-walled nanotubes,” Physical review B, Vol. 20, P. 14013, 1998.
    [27]Materials Studio 4.0, Discover, Accelry, San Diego, CA, 2002.
    [28]Liew, K. M., Wong, C. H., Tan, M. J., ”Tensile and compressive properties of carbon nanotube bundles,” Acta materialia, Vol. 54, P. 225, 2006.
    [29]Sun, H., ”COMPASS: An ab initial forcefield optimized for condensed-phase applications,” Journal of physics and chemistry B, Vol. 102, P. 7338, 1998.
    [30]徐業良,工程最佳化設計,國立編譯館主編,1995。
    [31]Takata, S., et al., ”Evaporation from or condensation onto a sphere: Numerical analysis of the Boltzmann equation for hard-sphere molecules,” Computers and mathematics with applications, Vol. 35, P. 193, 1998.
    [32]Papaportl, D. C., The art of molecular dynamics simulation, Cambridge university press, London, 1997.
    [33]Gusev, A. A., et al., ”Fluctuation formula for elastic constant,” Physical review B, Vol. 54, P. 541, 1996.
    [34]Nosé, S., ”A molecular dynamics method for simulations in the canonical ensemble,” Molecular physics, Vol. 52, P. 255, 1984.
    [35]Parrinello, M., Rahman, A., ”Polymorphic transitions in single crystals: A new molecular dynamics method,” Journal of apply physics, Vol. 52, P. 7182, 1981.
    [36]Berendsen, H. J., et al., ”Molecular dynamics with coupling to an external bath,” Journal of chemical physics, Vol. 81, P. 3684, 1984.
    [37]Parrinello, M., Rahman, A., ”Strain fluctuations and elastic constant,” Journal of chemical physics, Vol. 75, P. 2662, 1982.
    [38]Tersoff, J., Ruoff, R. S., ”Structure properties of a carbon-nanotube crystal,” Physical review letters, Vol. 73, P. 676, 1994.
    [39]胡潛濱,奈米科技基礎、應用與實作,高立圖書股份有限公司,2005。
    [40]呂昇益,快速奈米碳管橋製作暨最低電阻量測及彎曲測試研究,清華大學材料科學研究所碩士論文,2003。
    [41]Mantena, P. R., et al., ”Molecular dynamics simulation of SWCNT–polymer nanocomposite and its constituents,” Journal of materials science, Vol. 10, P. 2132, 2007.
    [42]Eric, W. W., Paul, E. S., Charles, M. L., ”Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes,” Science, Vol. 277, P. 1971, 2007.
    [43]Liew, K. M., Wong, C. H., Tan, M. J., ”Tensile and compressive properties of carbon nanotube bundles,” Acta materialia, Vol. 54, P. 225, 2006.
    [44]張憲章,原子力顯微鏡成像原理與簡易操作手冊,國立成功大學醫學工程所生醫感測實驗室。
    [45]方得華,原子力顯微鏡奈米加工技術研究,國立成功大學機械工程研究所博士論文,2000。
    [46]Liu, J., et al., ”Fullerene pipes,” Secince, Vol. 280, P. 1253, 1998.
    [47]匡元生技公司,單壁奈米碳管規格型錄。
    [48]Yutaka, M., Makoto, K., ”Dispersion and separation of small-diameter single-walled carbon nanotubes,” Journal of America chemistry society, Vol. 128, P. 12239, 2006.
    [49]黃文璋,布朗運動簡介,數學傳撥,第16卷第4期,1992。
    [50]石立節,奈米碳管酸純化前後表面特性之變化,國立中央大學環境工程研究所,2005。
    [51]蔡淑慧,拉曼光譜在奈米碳管檢測上之應用,中央研究院物理所,奈米通訊,第十二卷第二期,1999。
    [52]Graham, T. W., Organic chemistry, Wiley, 1998.
    [53]鐘夢璋,以光學顯微鏡及原子力顯微鏡於大氣中觀測及操控奈米碳管之研究,國立中央大學物理研究所,2006。
    [54]Gere, J. M., Timoshenko, S. P., Mechanics of materials, Stanley thornes, 2006.
    [55]歐美加電子材料有限公司,原子力顯微鏡探針規格型錄。
    [56]林仁輝,奈米技術,Lecture Note,國立成功大學機械工程學系,2007。

    下載圖示 校內:立即公開
    校外:2008-07-03公開
    QR CODE