| 研究生: |
王奕翔 Wang, Yi-Shiang |
|---|---|
| 論文名稱: |
探討泛素專一性胜肽酶二十四於肺癌吉非替尼抗藥性與癌症相關性心肌病的功能性角色 Functional roles of USP24 in gefitinib resistance and cancer-associated cardiomyopathy in lung cancer |
| 指導教授: |
洪建中
Hung, Jan-Jong |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 肺癌 、抗藥性 、心肌病變 、泛素專一性胜肽酶二十四 |
| 外文關鍵詞: | Lung cancer, Drug resistance, Cardiomyopathy, Ubiquitin-specific peptidase 24 |
| ORCID: | 0000-0002-6790-4165 |
| 相關次數: | 點閱:60 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺癌為致死率極高的癌症之一,在發展過程中或治療後,腫瘤異質性及併發症常致使較差預後。盡管如此,現今相關探討仍多侷限在體外試驗;為此,我們建構出體內肺癌模式並分別探討p53及USP24在肺癌的gefitinib抗藥性以及併發心血管疾病的角色。使用的小鼠基因背景包含可誘導表現突變EGFR (EGFRL858R)、部分p53缺失 (p53+/-) 以及酵素性位點缺失的USP24 (USP24C1695A/C1695A);由此,我們發現了p53對gefitinib抗藥性調控的可能方式以及USP24促使心血管疾病的角色。在對gefitinib具抗藥性的情況下,p53+/-小鼠減少了鄰近p53的基因突變以及截然不同的基因表現樣貌,並可能以此促使gefitinib抗藥性產生。另外,在誘導出肺部腫瘤的情況下,USP24C1695A/ C1695A小鼠的心血管疾病症狀較為輕微,且心臟纖維化相關基因之表現也較低下。我們更進一步在以cisplatin或TGF-β誘導纖維化後,處理以USP24專一性的抑制劑 - USP24-i-101;而後;我們發現大鼠心臟肌肉細胞株H9c2的纖維化相關基因 - FN1、FSP1、CCN2、POSTN、COL1A1以及COL3A1 均受USP24-i-101抑制。此外,在肺癌細胞株A549處理以USP24-i-101或降低USP24表現亦能以釋放至培養基的物質間接抑制H9c2在纖維化基因的表現。根據USP24對心臟纖維化的直接或間接促進,以USP24為標的或能藉由抑制心臟纖維化以維持心臟功能,進而減少肺癌病人在肺癌進程中或治療後的心因性死亡。
Lung cancer has been one of the leading causes of death. Tumor heterogeneity and simultaneous complications develop during the progression of cancer and often result in poor survival rates post treatments. However, most studies related to heterogeneous tumors were conducted in vitro. We had established an in vivo lung cancer model to demonstrate the role of p53 and USP24 in gefitinib resistance and simultaneous cardiovascular disease (CVD), respectively. With the mice expressing inducible mutated EGFR (EGFRL858R), partial loss of p53 (p53+/-), and enzymatically abolished USP24 (USP24C1695A/ C1695A), we found the potential approaches of p53 modulating gefitinib resistance and the assisting role of USP24 in CVD. Under the gefitinib-resistant conditions, p53+/- mice displayed alleviated mutation frequency on the loci close to Tp53 and a distinct gene expression profile, resulting in enhanced gefitinib resistance. Under lung tumor-bearing conditions, USP24C1695A/ C1695A mice developed less severe CVD symptoms and less expression of cardiac fibrosis-related genes. Furthermore, targeting USP24 during the treatment of cisplatin or TGF-β with a specific inhibitor, USP24-i-101, decreased cardiac fibrosis-related genes, FN1, FSP1, CCN2, POSTN, COL1A1, and COL3A1, in a rat cardiomyocyte cell line, H9c2. Additionally, USP24-i-101 treatment or USP24 knockdown indirectly decreased fibrosis-related gene expression in H9c2 via the conditional medium collected from a lung cancer cell line, A549. According to the positive regulation of USP24 in fibrosis, targeting USP24 may maintain cardiac function by inhibiting cardiac fibrosis, which may reduce the CVD-leading death of lung cancer patients during cancer progression or post therapies.
Aboumsallem, J. P., Moslehi, J., & de Boer, R. A. (2020). Reverse cardio-oncology: Cancer development in patients with cardiovascular disease. J Am. Heart Assoc. 9(2), e013754.
Alexanian, M., Padmanabhan, A., Nishino, T., Travers, J. G., Ye, L., Pelonero, A., Lee, C. Y., Sadagopan, N., Huang, Y., Auclair, K., Zhu, A., An, Y., Ekstrand, C. A., Martinez, C., Teran, B. G., Flanigan, W. R., Kim, C. K., Lumbao-Conradson, K., Gardner, Z., Li, L., … Srivastava, D. (2024). Chromatin remodelling drives immune cell-fibroblast communication in heart failure. Nature. 635(8038), 434–443.
Amato, L., De Rosa, C., Di Guida, G., Sepe, F., Ariano, A., Capaldo, S., Ul Haq, F., Di Liello, A., Tuccillo, C., Lucà, S., Franco, R., De Rosa, V., Iommelli, F., Servetto, A., Ciardiello, F., Della Corte, C. M., & Morgillo, F. (2025). Adding metformin to anti-PD-1/PD-L1 drugs activates anti-tumor immune response in peripheral immune cells of NSCLC patients. Cell Death Dis. 16(1), 286.
Amin, M. N., Siddiqui, S. A., Ibrahim, M., Hakim, M. L., Ahammed, M. S., Kabir, A., & Sultana, F. (2020). Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med. 8, 2050312120965752.
Appadurai, M. I., Chaudhary, S., Shah, A., Natarajan, G., Alsafwani, Z. W., Khan, P., Shinde, D. D., Lele, S. M., Smith, L. M., Nasser, M. W., Batra, S. K., Ganti, A. K., & Lakshmanan, I. (2025). ST6GalNAc-I regulates tumor cell sialylation via NECTIN2/MUC5AC-mediated immunosuppression and angiogenesis in non-small cell lung cancer. J Clin. Invest. 135(10), e186863.
Arai, Y., Totoki, Y., Takahashi, H., Nakamura, H., Hama, N., Kohno, T., Tsuta, K., Yoshida, A., Asamura, H., Mutoh, M., Hosoda, F., Tsuda, H., & Shibata, T. (2013). Mouse model for ROS1-rearranged lung cancer. PloS One. 8(2), e56010.
Arnovitz, S., Mathur, P., Tracy, M., Mohsin, A., Mondal, S., Quandt, J., Hernandez, K. M., Khazaie, K., Dose, M., Emmanuel, A. O., & Gounari, F. (2022). Tcf-1 promotes genomic instability and T cell transformation in response to aberrant β-catenin activation. Proc. Natl. Acad. Sci. U S A. 119(32), e2201493119.
Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C., & Fearon, K. C. H. (2018). Cancer-associated cachexia. Nat. Rev. Dis. Primers. 4, 17105.
Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár, J., Kryukov, G. V., Sonkin, D., Reddy, A., Liu, M., Murray, L., Berger, M. F., Monahan, J. E., Morais, P., Meltzer, J., Korejwa, A., Jané-Valbuena, J., Mapa, F. A., … Garraway, L. A. (2012). The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 483(7391), 603–607.
Ben-David, U., Siranosian, B., Ha, G., Tang, H., Oren, Y., Hinohara, K., Strathdee, C. A., Dempster, J., Lyons, N. J., Burns, R., Nag, A., Kugener, G., Cimini, B., Tsvetkov, P., Maruvka, Y. E., O'Rourke, R., Garrity, A., Tubelli, A. A., Bandopadhayay, P., Tsherniak, A., … Golub, T. R. (2018). Genetic and transcriptional evolution alters cancer cell line drug response. Nature. 560(7718), 325–330.
Bray, F., Laversanne, M., Cao, B., Varghese, C., Mikkelsen, B., Weiderpass, E., & Soerjomataram, I. (2021). Comparing cancer and cardiovascular disease trends in 20 middle- or high-income countries 2000-19: A pointer to national trajectories towards achieving sustainable development goal target 3.4. Cancer Treat. Rev. 100, 102290.
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J Clin. 74(3), 229–263.
Chen, S., Wu, J. L., Liang, Y., Tang, Y. G., Song, H. X., Wu, L. L., Xing, Y. F., Yan, N., Li, Y. T., Wang, Z. Y., Xiao, S. J., Lu, X., Chen, S. J., & Lu, M. (2021). Arsenic trioxide rescues structural p53 mutations through a cryptic allosteric site. Cancer cell. 39(2), 225–239.
Cohn, R. D., van Erp, C., Habashi, J. P., Soleimani, A. A., Klein, E. C., Lisi, M. T., Gamradt, M., ap Rhys, C. M., Holm, T. M., Loeys, B. L., Ramirez, F., Judge, D. P., Ward, C. W., & Dietz, H. C. (2007). Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat. Med. 13(2), 204–210.
Conway, S. J., & Molkentin, J. D. (2008). Periostin as a heterofunctional regulator of cardiac development and disease. Curr. Genomics, 9(8), 548–555.
Cruz, L., Soares, P., & Correia, M. (2021). Ubiquitin-specific proteases: Players in cancer cellular processes. Pharmaceuticals (Basel). 14(9), 848.
Cui, R., Su, H., Jiang, Y., Yu, X., & Liu, Y. (2025). Propensity score analysis of high-dose rate brachytherapy, immune checkpoint inhibitors, and docetaxel in second-line advanced NSCLC treatment. Sci. Rep. 15(1), 12650.
D'Angelo, S. P., Pietanza, M. C., Johnson, M. L., Riely, G. J., Miller, V. A., Sima, C. S., Zakowski, M. F., Rusch, V. W., Ladanyi, M., & Kris, M. G. (2011). Incidence of EGFR exon 19 deletions and L858R in tumor specimens from men and cigarette smokers with lung adenocarcinomas. J Clin. Oncol. 29(15), 2066–2070.
Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., … Futreal, P. A. (2002). Mutations of the BRAF gene in human cancer. Nature. 417(6892), 949–954.
de Boer, R. A., Hulot, J. S., Tocchetti, C. G., Aboumsallem, J. P., Ameri, P., Anker, S. D., Bauersachs, J., Bertero, E., Coats, A. J. S., Čelutkienė, J., Chioncel, O., Dodion, P., Eschenhagen, T., Farmakis, D., Bayes-Genis, A., Jäger, D., Jankowska, E. A., Kitsis, R. N., Konety, S. H., Larkin, J., … Backs, J. (2020). Common mechanistic pathways in cancer and heart failure. A scientific roadmap on behalf of the translational research committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. J Heart Fail. 22(12), 2272–2289.
de Jesus, M., Chanda, A., Grabauskas, T., Kumar, M., & Kim, A. S. (2024). Cardiovascular disease and lung cancer. Front. Oncol. 14, 1258991.
Dewson, G., Eichhorn, P. J. A., & Komander, D. (2023). Deubiquitinases in cancer. Nat. Rev. Cancer. 23(12), 842–862.
Dorn, L. E., Petrosino, J. M., Wright, P., & Accornero, F. (2018). CTGF/CCN2 is an autocrine regulator of cardiac fibrosis. J Mol. Cell. Cardiol. 121, 205–211.
Fearon, K. C., Glass, D. J., & Guttridge, D. C. (2012). Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 16(2), 153–166.
Florido, R., Daya, N. R., Ndumele, C. E., Koton, S., Russell, S. D., Prizment, A., Blumenthal, R. S., Matsushita, K., Mok, Y., Felix, A. S., Coresh, J., Joshu, C. E., Platz, E. A., & Selvin, E. (2022). Cardiovascular disease risk among cancer survivors: The atherosclerosis risk in communities (ARIC) study. J Am. Coll. Cardiol. 80(1), 22–32.
Fonseca, G. W. P. D., Farkas, J., Dora, E., von Haehling, S., & Lainscak, M. (2020). Cancer cachexia and related metabolic dysfunction. Int. J Mol. Sci. 21(7), 2321.
Frangogiannis N. G. (2012). Matricellular proteins in cardiac adaptation and disease. Physiol. Rev. 92(2), 635–688.
Frangogiannis N. G. (2021). Cardiac fibrosis. Cardiovasc. Res. 117(6), 1450–1488.
Froese, N., Szaroszyk, M., Galuppo, P., Visker, J. R., Werlein, C., Korf-Klingebiel, M., Berliner, D., Reboll, M. R., Hamouche, R., Gegel, S., Wang, Y., Hofmann, W., Tang, M., Geffers, R., Wende, A. R., Kühnel, M. P., Jonigk, D. D., Hansmann, G., Wollert, K. C., Abel, E. D., … Riehle, C. (2024). Hypoxia attenuates pressure overload-induced heart failure. J Am. Heart Assoc. 13(3), e033553.
Green, S., Trejo, C. L., & McMahon, M. (2015). PIK3CA(H1047R) accelerates and enhances KRAS(G12D)-driven lung tumorigenesis. Cancer Res. 75(24), 5378–5391.
Guler, M. N., Tscheiller, N. M., Sabater-Molina, M., Gimeno, J. R., & Nebigil, C. G. (2022). Evidence for reciprocal network interactions between injured hearts and cancer. Front. Cardiovasc. Med. 9, 929259.
Han, J., Zhang, Y., & Peng, H. (2023). Fucoxanthin inhibits cardiac fibroblast transdifferentiation by alleviating oxidative stress through downregulation of BRD4. PloS One. 18(9), e0291469.
Hasin, T., Gerber, Y., McNallan, S. M., Weston, S. A., Kushwaha, S. S., Nelson, T. J., Cerhan, J. R., & Roger, V. L. (2013). Patients with heart failure have an increased risk of incident cancer. J Am. Coll. Cardiol. 62(10), 881–886.
Haugnes, H. S., Wethal, T., Aass, N., Dahl, O., Klepp, O., Langberg, C. W., Wilsgaard, T., Bremnes, R. M., & Fosså, S. D. (2010). Cardiovascular risk factors and morbidity in long-term survivors of testicular cancer: a 20-year follow-up study. J Clin. Oncol. 28(30), 4649–4657.
He, Z., Jiao, H., An, Q., Zhang, X., Zengyangzong, D., Xu, J., Liu, H., Ma, L., & Zhao, W. (2022). Discovery of novel 4-phenylquinazoline-based BRD4 inhibitors for cardiac fibrosis. Acta Pharm. Sin. B. 12(1), 291–307.
Hinderer, S., & Schenke-Layland, K. (2019). Cardiac fibrosis - A short review of causes and therapeutic strategies. Adv. Drug Deliv. Rev. 146, 77–82.
Hou, Y., Hou, L., Liang, Y., Zhang, Q., Hong, X., Wang, Y., Huang, X., Zhong, T., Pang, W., Xu, C., Zhu, L., Li, L., Fang, J., & Meng, X. (2020). The p53-inducible CLDN7 regulates colorectal tumorigenesis and has prognostic significance. Neoplasia. 22(11), 590–603.
Huang, Y., Yu, P., Li, W., Ren, G., Roberts, A. I., Cao, W., Zhang, X., Su, J., Chen, X., Chen, Q., Shou, P., Xu, C., Du, L., Lin, L., Xie, N., Zhang, L., Wang, Y., & Shi, Y. (2014). p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation. Oncogene. 33(29), 3830–3838.
Hynds, R. E., Frese, K. K., Pearce, D. R., Grönroos, E., Dive, C., & Swanton, C. (2021). Progress towards non-small-cell lung cancer models that represent clinical evolutionary trajectories. Open Biol. 11(1), 200247.
Inoue, M., Toki, H., Matsui, J., Togashi, Y., Dobashi, A., Fukumura, R., Gondo, Y., Minowa, O., Tanaka, N., Mori, S., Takeuchi, K., & Noda, T. (2016). Mouse models for ROS1-fusion-positive lung cancers and their application to analyze multikinase inhibitor efficiency. Carcinogenesis. 37(5), 452–460.
Jourdan-Lesaux, C., Zhang, J., & Lindsey, M. L. (2010). Extracellular matrix roles during cardiac repair. Life Sci. 87(13-14), 391–400.
Kakimi, K., Matsushita, H., Masuzawa, K., Karasaki, T., Kobayashi, Y., Nagaoka, K., Hosoi, A., Ikemura, S., Kitano, K., Kawada, I., Manabe, T., Takehara, T., Ebisudani, T., Nagayama, K., Nakamura, Y., Suzuki, R., Yasuda, H., Sato, M., Soejima, K., & Nakajima, J. (2020). Adoptive transfer of zoledronate-expanded autologous Vγ9Vδ2 T-cells in patients with treatment-refractory non-small-cell lung cancer: a multicenter, open-label, single-arm, phase 2 study. J Immunother. Cancer. 8(2), e001185.
Kim, S. M., Lim, E. J., Yoo, K. C., Zhao, Y., Kang, J. H., Lim, E. J., Shin, I., Kang, S. G., Lim, H. W., & Lee, S. J. (2022). Glioblastoma-educated mesenchymal stem-like cells promote glioblastoma infiltration via extracellular matrix remodelling in the tumour microenvironment. Clin. Transl. Med. 12(8), e997.
Kwak, S., Kwon, S., Lee, S. Y., Yang, S., Lee, H. J., Lee, H., Park, J. B., Han, K., Kim, Y. J., & Kim, H. K. (2021). Differential risk of incident cancer in patients with heart failure: A nationwide population-based cohort study. J Cardiol. 77(3), 231–238.
Lee, J. G., & Kay, E. P. (2008). Involvement of two distinct ubiquitin E3 ligase systems for p27 degradation in corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 49(1), 189–196.
Li, J., Li, Y., Pawlik, K. M., Napierala, J. S., & Napierala, M. (2020). A CRISPR-Cas9, Cre-lox, and Flp-FRT cascade strategy for the precise and efficient integration of exogenous DNA into cellular genomes. CRISPR J. 3(6), 470–486.
Li, L. C., Zhao, H., Nakajima, K., Oh, B. R., Ribeiro Filho, L. A., Carroll, P., & Dahiya, R. (2001). Methylation of the E-cadherin gene promoter correlates with progression of prostate cancer. J Urol. 166(2), 705–709.
Li, L., Zhao, Q., & Kong, W. (2018). Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol. 68-69, 490–506.
Liang, F., Ren, C., Wang, J., Wang, S., Yang, L., Han, X., Chen, Y., Tong, G., & Yang, G. (2019). The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy. Oncogenesis. 8(10), 59.
Lin, Y., Mallen-St Clair, J., Luo, J., Sharma, S., Dubinett, S., & St John, M. (2015). p53 modulates NF-κB mediated epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol. 51(10), 921–928.
Lin, Z., Li, Z., Guo, Z., Cao, Y., Li, J., Liu, P., & Li, Z. (2022). Epigenetic reader bromodomain containing protein 2 facilitates pathological cardiac hypertrophy by regulating citrate cycle gene expression. Front. Pharmacol. 13, 887991.
Liu, M., López de Juan Abad, B., & Cheng, K. (2021). Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv. Drug Deliv. Rev. 173, 504–519.
Lukow, D. A., Sausville, E. L., Suri, P., Chunduri, N. K., Wieland, A., Leu, J., Smith, J. C., Girish, V., Kumar, A. A., Kendall, J., Wang, Z., Storchova, Z., & Sheltzer, J. M. (2021). Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Dev. Cell. 56(17), 2427–2439.
Marjanovic, N. D., Hofree, M., Chan, J. E., Canner, D., Wu, K., Trakala, M., Hartmann, G. G., Smith, O. C., Kim, J. Y., Evans, K. V., Hudson, A., Ashenberg, O., Porter, C. B. M., Bejnood, A., Subramanian, A., Pitter, K., Yan, Y., Delorey, T., Phillips, D. R., Shah, N., … Tammela, T. (2020). Emergence of a high-plasticity cell state during lung cancer evolution. Cancer cell. 38(2), 229–246.e13.
McLemore, T. L., Liu, M. C., Blacker, P. C., Gregg, M., Alley, M. C., Abbott, B. J., Shoemaker, R. H., Bohlman, M. E., Litterst, C. C., & Hubbard, W. C. (1987). Novel intrapulmonary model for orthotopic propagation of human lung cancers in athymic nude mice. Cancer Res. 47(19), 5132–5140.
McLemore, T. L., Liu, M. C., Blacker, P. C., Gregg, M., Alley, M. C., Abbott, B. J., Shoemaker, R. H., Bohlman, M. E., Litterst, C. C., & Hubbard, W. C. (1987). Novel intrapulmonary model for orthotopic propagation of human lung cancers in athymic nude mice. Cancer Res. 47(19), 5132–5140.
Mędrek, S., & Szmit, S. (2022). Are cardiovascular comorbidities always associated with a worse prognosis in patients with lung cancer? Front. Cardiolvasc. Med. 9, 984951.
Melosky, B., Wheatley-Price, P., Juergens, R. A., Sacher, A., Leighl, N. B., Tsao, M. S., Cheema, P., Snow, S., Liu, G., Card, P. B., & Chu, Q. (2021). The rapidly evolving landscape of novel targeted therapies in advanced non-small cell lung cancer. Lung cancer. 160, 136–151.
Middha, P., Thummalapalli, R., Quandt, Z., Balaratnam, K., Cardenas, E., Falcon, C. J., Margaret Lung Group, P., Gubens, M. A., Huntsman, S., Khan, K., Li, M., Lovly, C. M., Patel, D., Zhan, L. J., Liu, G., Aldrich, M. C., Schoenfeld, A., & Ziv, E. (2025). Germline prediction of immune checkpoint inhibitor discontinuation for immune-related adverse events. J Immunother. Cancer. 13(3), e011273.
Min, J., Wu, L., Liu, Y., Song, G., Deng, Q., Jin, W., Yu, W., Abudureyimu, M., Pei, Z., & Ren, J. (2023). Empagliflozin attenuates trastuzumab-induced cardiotoxicity through suppression of DNA damage and ferroptosis. Life Sci. 312, 121207.
Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E., & Adjei, A. A. (2008). Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 83(5), 584–594.
Monaci, S., Coppola, F., Filippi, I., Falsini, A., Carraro, F., & Naldini, A. (2024). Targeting hypoxia signaling pathways in angiogenesis. Front. Physiol. 15, 1408750.
Morrow A. G. (1978). Hypertrophic subaortic stenosis. Operative methods utilized to relieve left ventricular outflow obstruction. J Thorac. Cardiovasc. Surg. 76(4), 423–430.
Mukherjee, D., & Sen, S. (1991). Alteration of collagen phenotypes in ischemic cardiomyopathy. J Clin. Investig. 88(4), 1141–1146.
Nagy, B. M., Nagaraj, C., Egemnazarov, B., Kwapiszewska, G., Stauber, R. E., Avian, A., Olschewski, H., & Olschewski, A. (2017). Lack of ABCG2 leads to biventricular dysfunction and remodeling in response to hypoxia. Frontiers in physiology, 8, 98.
Ng, C. M., Cheng, A., Myers, L. A., Martinez-Murillo, F., Jie, C., Bedja, D., Gabrielson, K. L., Hausladen, J. M., Mecham, R. P., Judge, D. P., & Dietz, H. C. (2004). TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin. Investig. 114(11), 1586–1592.
Ni, J., & Zhang, L. (2020). Cancer cachexia: Definition, staging, and emerging treatments. Cancer Manag. Res. 12, 5597–5605.
Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., & Bernards, R. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell, 123(5), 773–786.
Oh, M. S., Dumitras, C., Salehi-Rad, R., Tran, L. M., Krysan, K., Lim, R. J., Jing, Z., Tappuni, S., Lisberg, A., Garon, E. B., Dubinett, S. M., & Liu, B. (2025). Characteristics of a CCL21 gene-modified dendritic cell vaccine utilized for a clinical trial in non-small cell lung cancer. Mol. Cancer Ther. 24(2), 286–298.
Politi, K., Zakowski, M. F., Fan, P. D., Schonfeld, E. A., Pao, W., & Varmus, H. E. (2006). Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev. 20(11), 1496–1510.
Ramazani, Y., Knops, N., Elmonem, M. A., Nguyen, T. Q., Arcolino, F. O., van den Heuvel, L., Levtchenko, E., Kuypers, D., & Goldschmeding, R. (2018). Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol. 68–69, 44–66.
Reymão, M. S., Cury, P. M., Lichtenfels, A. J., Lemos, M., Battlehner, C. N., Conceição, G. M., Capelozzi, V. L., Montes, G. S., Júnior, M. F., Martins, M. A., Böhm, G. M., & Saldiva, P. H. (1997). Urban air pollution enhances the formation of urethane-induced lung tumors in mice. Environ. Res. 74(2), 150–158.
Riedl, J., Hell, L., Kaider, A., Koder, S., Marosi, C., Zielinski, C., Panzer, S., Pabinger, I., & Ay, C. (2016). Association of platelet activation markers with cancer-associated venous thromboembolism. Platelets. 27(1), 80–85.
Roeper, J., Christopoulos, P., Falk, M., Heukamp, L. C., Tiemann, M., Stenzinger, A., Thomas, M., & Griesinger, F. (2022). TP53 co-mutations as an independent prognostic factor in 2nd and further line therapy-EGFR mutated non-small cell lung cancer IV patients treated with osimertinib. Transl. Lung Cancer Res. 11(1), 4–13.
Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer Statistics, 2021. CA Cancer J Clin. 71(1), 7–33.
Soda, M., Takada, S., Takeuchi, K., Choi, Y. L., Enomoto, M., Ueno, T., Haruta, H., Hamada, T., Yamashita, Y., Ishikawa, Y., Sugiyama, Y., & Mano, H. (2008). A mouse model for EML4-ALK-positive lung cancer. PNAS. 105(50), 19893–19897.
Song, S., Zhang, X., Huang, Z., Zhao, Y., Lu, S., Zeng, L., Cai, F., Wang, T., Pei, Z., Weng, X., Luo, W., Lu, H., Wei, Z., Wu, J., Yu, P., Shen, L., Zhang, X., Sun, A., & Ge, J. (2024). TEA domain transcription factor 1(TEAD1) induces cardiac fibroblasts cells remodeling through BRD4/Wnt4 pathway. Signal Transduct. Target Ther. 9(1), 45.
Sun, C., Sakashita, H., Kim, J., Tang, Z., Upchurch, G. M., Yao, L., Berry, W. L., Griffin, T. M., & Olson, L. E. (2020). Mosaic mutant analysis identifies pdgfrα/pdgfrβ as negative regulators of adipogenesis. Cell stem cell. 26(5), 707–721.e5.
Sun, Z., Zhang, R., Zhang, X., Sun, Y., Liu, P., Francoeur, N., Han, L., Lam, W. Y., Yi, Z., Sebra, R., Walsh, M., Yu, J., & Zhang, W. (2022). LINE-1 promotes tumorigenicity and exacerbates tumor progression via stimulating metabolism reprogramming in non-small cell lung cancer. Mol. Cancer. 21(1), 147.
Sutherland, K. D., Song, J. Y., Kwon, M. C., Proost, N., Zevenhoven, J., & Berns, A. (2014). Multiple cells-of-origin of mutant K-Ras-induced mouse lung adenocarcinoma. PNAS. 111(13), 4952–4957.
Tadokoro, T., Ikeda, M., Abe, K., Ide, T., Miyamoto, H. D., Furusawa, S., Ishimaru, K., Watanabe, M., Ishikita, A., Matsushima, S., Koumura, T., Yamada, K. I., Imai, H., & Tsutsui, H. (2022). Ethoxyquin is a competent radical-trapping antioxidant for preventing ferroptosis in doxorubicin cardiotoxicity. J Cardiovasc. Pharmacol. 80(5), 690–699.
Tadokoro, T., Ikeda, M., Ide, T., Deguchi, H., Ikeda, S., Okabe, K., Ishikita, A., Matsushima, S., Koumura, T., Yamada, K. I., Imai, H., & Tsutsui, H. (2020). Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI insight. 5(9), e132747.
Tang, M. S., Wu, X. R., Lee, H. W., Xia, Y., Deng, F. M., Moreira, A. L., Chen, L. C., Huang, W. C., & Lepor, H. (2019). Electronic-cigarette smoke induces lung adenocarcinoma and bladder urothelial hyperplasia in mice. PNAS. 116(43), 21727–21731.
Thayer, J. A., Awad, O., Hegdekar, N., Sarkar, C., Tesfay, H., Burt, C., Zeng, X., Feldman, R. A., & Lipinski, M. M. (2020). The PARK10 gene USP24 is a negative regulator of autophagy and ULK1 protein stability. Autophagy. 16(1), 140–153.
Tran, P. T., Fan, A. C., Bendapudi, P. K., Koh, S., Komatsubara, K., Chen, J., Horng, G., Bellovin, D. I., Giuriato, S., Wang, C. S., Whitsett, J. A., & Felsher, D. W. (2008). Combined inactivation of MYC and K-Ras oncogenes reverses tumorigenesis in lung adenocarcinomas and lymphomas. PloS One. 3(5), e2125.
Tsai, M. C., Hsu, M. S., Hsu, H. Y., Yeh, T. L., Chiang, C. J., Lee, W. C., Jhuang, J. R., Cheng, S. P., Tseng, P. J., & Chien, K. L. (2023). Investigating the risk of metabolic and cardiovascular comorbidities among patients with parathyroid cancer: a nationwide representative cohort study in Taiwan. BMC Med. 21(1), 249.
Wang, C., Lu, D., Cronin-Fenton, D., Huang, C., Liew, Z., Wei, D., Qin, G., Yu, Y., & Li, J. (2022). Cardiovascular disease and risk of lung cancer incidence and mortality: A nationwide matched cohort study. Front. Oncol. 12, 950971.
Wang, Q., Sun, Y., Li, T., Liu, L., Zhao, Y., Li, L., Zhang, L., & Meng, Y. (2019). Function of BRD4 in the pathogenesis of high glucose induced cardiac hypertrophy. Mol. Med. Rep. 19(1), 499–507.
Wang, S. A., Wang, Y. C., Chuang, Y. P., Huang, Y. H., Su, W. C., Chang, W. C., & Hung, J. J. (2017). EGF-mediated inhibition of ubiquitin-specific peptidase 24 expression has a crucial role in tumorigenesis. Oncogene. 36(21), 2930–2945.
Wang, S. A., Young, M. J., Jeng, W. Y., Liu, C. Y., & Hung, J. J. (2020). USP24 stabilizes bromodomain containing proteins to promote lung cancer malignancy. Sci. Rep. 10(1), 20870.
Wang, S. A., Young, M. J., Jeng, W. Y., Liu, C. Y., & Hung, J. J. (2020). USP24 stabilizes bromodomain containing proteins to promote lung cancer malignancy. Sci. Rep. 10(1), 20870.
Wang, S. A., Young, M. J., Wang, Y. C., Chen, S. H., Liu, C. Y., Lo, Y. A., Jen, H. H., Hsu, K. C., & Hung, J. J. (2021). USP24 promotes drug resistance during cancer therapy. Cell Death Differ. 28(9), 2690–2707.
Wang, S. P., Wang, W. L., Chang, Y. L., Wu, C. T., Chao, Y. C., Kao, S. H., Yuan, A., Lin, C. W., Yang, S. C., Chan, W. K., Li, K. C., Hong, T. M., & Yang, P. C. (2009). p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat. Cell Biol. 11(6), 694–704.
Wang, W., Zhong, X., Fang, Z., Li, J., Li, H., Liu, X., Yuan, X., Huang, W., & Huang, Z. (2023). Cardiac sirtuin1 deficiency exacerbates ferroptosis in doxorubicin-induced cardiac injury through the Nrf2/Keap1 pathway. Chem. Biol. Interact. 377, 110469.
Wang, X. M., Wang, Y. C., Liu, X. J., Wang, Q., Zhang, C. M., Zhang, L. P., Liu, H., Zhang, X. Y., Mao, Y., & Ge, Z. M. (2017). BRD7 mediates hyperglycaemia-induced myocardial apoptosis via endoplasmic reticulum stress signalling pathway. J Cell Mol. Med. 21(6), 1094–1105.
Wang, Y. C., Wang, S. A., Chen, P. H., Hsu, T. I., Yang, W. B., Chuang, Y. P., Su, W. C., Liaw, H. J., Chang, W. C., & Hung, J. J. (2016). Variants of ubiquitin-specific peptidase 24 play a crucial role in lung cancer malignancy. Oncogene. 35(28), 3669–3680.
Wang, Y. C., Wu, Y. S., Hung, C. Y., Wang, S. A., Young, M. J., Hsu, T. I., & Hung, J. J. (2018). USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and β-TrCP and promotes cancer malignancy. Nat. Commun. 9(1), 3996.
Witschi, H., Espiritu, I., Peake, J. L., Wu, K., Maronpot, R. R., & Pinkerton, K. E. (1997). The carcinogenicity of environmental tobacco smoke. Carcinogenesis. 18(3), 575–586.
Wu, Q., Zou, S., Liu, W., Liang, M., Chen, Y., Chang, J., Liu, Y., & Yu, X. (2023). A novel onco-cardiological mouse model of lung cancer-induced cardiac dysfunction and its application in identifying potential roles of tRNA-derived small RNAs. Biomed. Pharmacother. 165, 115117.
Wu, S., Zhu, J., Wu, G., Hu, Z., Ying, P., Bao, Z., Ding, Z., & Tan, X. (2022). 6-Gingerol alleviates ferroptosis and inflammation of diabetic cardiomyopathy via the Nrf2/HO-1 pathway. Oxid. Med. Cell Longev. 2022, 3027514.
Wu, T., Xu, Y., Song, Q., Liao, X., Yao, W., Wang, G., Yang, Y., Wang, B., Guo, L., Zhang, M., Wu, G., Luo, L., Bai, L., Wang, Y., Hu, M., & Xu, Z. (2025). DNA damage and repair (DDR) gene mutation profiles in driver gene wild-type advanced non-small cell lung cancer and the predictive role of response to platinum-based chemotherapy. Transl. Lung Cancer Res. 14(4), 1089–1103.
Wu, Y. R., Chen, C. M., Chen, Y. C., Chao, C. Y., Ro, L. S., Fung, H. C., Hsiao, Y. C., Hu, F. J., & Lee-Chen, G. J. (2010). Ubiquitin specific proteases USP24 and USP40 and ubiquitin thiolesterase UCHL1 polymorphisms have synergic effect on the risk of Parkinson's disease among Taiwanese. Clin. Chim. Acta. 411(13-14), 955–958.
Xia, J., Hu, J. N., Zhang, R. B., Liu, W., Zhang, H., Wang, Z., Jiang, S., Wang, Y. P., & Li, W. (2022). Icariin exhibits protective effects on cisplatin-induced cardiotoxicity via ROS-mediated oxidative stress injury in vivo and in vitro. Phytomedicine, 104, 154331.
Xu, X., Rock, J. R., Lu, Y., Futtner, C., Schwab, B., Guinney, J., Hogan, B. L., & Onaitis, M. W. (2012). Evidence for type II cells as cells of origin of K-Ras-induced distal lung adenocarcinoma. PNAS. 109(13), 4910–4915.
Yeh, T. L., Hsu, M. S., Hsu, H. Y., Tsai, M. C., Jhuang, J. R., Chiang, C. J., Lee, W. C., & Chien, K. L. (2022). Risk of cardiovascular diseases in cancer patients: A nationwide representative cohort study in Taiwan. BMC Cancer. 22(1), 1198.
Young, M. J., Wang, S. A., Chen, Y. C., Liu, C. Y., Hsu, K. C., Tang, S. W., Tseng, Y. L., Wang, Y. C., Lin, S. M., & Hung, J. J. (2024). USP24-i-101 targeting of USP24 activates autophagy to inhibit drug resistance acquired during cancer therapy. Cell Death Differ. 31(5), 574–591.
Zhao, B., Song, W., Chen, Y. P., Huang, R., Chen, K., Cao, B., Yang, Y., & Shang, H. F. (2012). Association analysis of single-nucleotide polymorphisms of USP24 and USP40 with Parkinson's disease in the Han Chinese population. Eur. Neurol. 68(3), 181–184.
Zhu, G., Cao, L., Wu, J., Xu, M., Zhang, Y., Wu, M., & Li, J. (2024). Co-morbid intersections of cancer and cardiovascular disease and targets for natural drug action: Reprogramming of lipid metabolism. Biomed. Pharmacother. 176, 116875.