簡易檢索 / 詳目顯示

研究生: 黃映齊
Huang, Ying-Chi
論文名稱: 應用於空對地微波通訊鏈路動態追蹤之預測型自適應控制系統
A Predictive Neural-Fuzzy Inference Control System for Dynamic Antenna Tracking in Air-Ground Microwave Air-Bridge Alignment
指導教授: 林清一
Lin, Chin-E.
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 152
中文關鍵詞: 自適應類神經模糊控制器天線追蹤系統微波通訊
外文關鍵詞: ANFIS, Prediction Control, Antenna Tracking Platform
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在與遠距離移動端的無線通信應用上,指向性天線(Directional Antenna)與追蹤平台的搭配是最常見的組合方案。 根據使用頻段的差異, 高頻段的通信鏈路所需要的指向準確度也隨之提高。 在本研究中我們建立一套利用低空飛行平台(Low Altitude Flying Platform, LAFP)搭載行動通信基地台(Base Transceiver Station, BTS)與地面追蹤平台組成的3維行動空中網路系統。 此系統設計應用於天然或是人為災害發生時, 低空飛行平台可以進入山區或是受阻隔的區域, 對受到電力中斷或是硬體損害而無法使用行動通信服務的區域進行通信鏈路的橋接。
    為保持系統鏈路與中華電信系統的相容性,在機載基地台(Airborne BTS)與地面後端網路(Backhaul Network)此段無線鏈路採用5.8GHz的微波頻段進行中繼。此外,為了維持空中微波橋接(Microwave Air-Bridge, MAB)的穩定性,本研究提出一個基於雙輸入單輸出類神經控制器的改良式類神經自適應控制策略,應用於步進馬達驅動的地面追蹤平台針對不同飛行特性的低空飛行平台進行持續且準確的追蹤控制。 有別於常見的控制誤差與誤差變化率作為類神經訓練的輸入,本研究針對定翼機飛行平台的連續(非布朗運動)軌跡飛行特性進行追蹤控制修改,只保留追蹤誤差作為神經元訓練輸入,另一輸入則以切線/徑向速率作為參考,藉此達到平滑追蹤能力。
    步進馬達擁有高精準度與快速響應的特性,在搭配驅動電路的使用下,除了傳統的全步進與半步進之外,更有多種級距的微步進可供控制器選擇。 在此系統架構下,本研究利用提出的控制策略針對步進馬達的單位步進級距經過類神經演算法因應當下的誤差與平台飛行速率輸入變量,做出有利於誤差最小化的單位步進級距決策。整體的測試經由低空飛行平台搭載微波通信模組後進行飛行實測。 根據飛行任務中系統頻寬,誤碼率(Bit Error Rate, BER)與向量誤差等數據對本研究提出的控制策略進行驗證。

    This dissertation presents a Predictive and Adaptive Neural-Fuzzy Inference System (PANFIS). The controller is implemented on a dual-axis rotation platform for directional antenna tracking. Remote side is a Low-Altitude Flying Platform (LAFP) carried with airborne e-Cell Base Transceiver Station (BTS) and microwave transceiver. In order to establish a reliable and steady Microwave Air-Bridging (MAB) link for signal relay, the accurate tracking mechanism is required. Two of the major improvement is proposed in this dissertation. The rule formation layer of conventional ANFIS is modified for shorter training period and output decision coherence. Prediction functionality of controller is implemented with the demand to eliminate tracking overshoot and steady error. The flight test verifies the different tracking scenario and integrity of proposed controller. Compared with the conventional ANFIS controller, the proposed method provides the better tracking performance and higher MAB quality for mobile signal relay mission.

    ABSTRACT IN CHINESE-----------i ABSTRACT---------------xi ACKNOWEDGEMENT-----------xii CONTENTS-------------xiii LIST OF TABLES------------xv LIST OF FIGURES-------------xvi NOMENCLATURE--------------xx CHAPTER I INTRODUCTION------------1 1.1 Introduction------------1 1.2 Literature Survey---------------5 1.3 Motivation--------------7 1.4 Dissertation Contribution----------7 1.5 Dissertation Outline---------8 CHAPTER II BACKGROUND STUDY AND EVALUATION OF CONVENTIONAL ANFIS CONTROLLER-------------10 2.1 Introduction of ANFIS---------------10 2.2 Comparison of Inference Systems------15 2.2.1 Mamdani Type---------15 2.2.2 Tsukamoto Type----------18 2.2.3 Takagi-Sugeno-Kang Type-------19 2.2.4 Mathematical Expression of NFIS-----20 2.3 Error Correction Mechanism--------22 2.3.1 ECM for Mamdani, Tsukamoto and TSK based ANFIS ------------23 2.4 Training for Different Inference Base Methods----25 2.4.1 Training Pattern and Environment of ANFIS-25 2.4.2 Angle Tracking with Different Inference Systems-----------27 2.5 Concluding Remark--------------36 CHAPTER III DEVELOPMENT OF PREDICTIVE ANFIS CONTROLLER FOR ANTENNA TRACKING PLATFORM------------36 3.1 Antenna Tracking Methodology---------38 3.1.1 Antenna Tracking Concept in Sky-Net mission--38 3.1.2 Coordinate Transformation-----39 3.1.3 Calculation of Azimuth and Elevation Angle---40 3.2 Design of the Proposed ANFIS Controller----41 3.2.1 Improvement of ANFIS Controller-----41 3.2.2 Achievement of Prediction Control Ability-51 3.3 Performance Evaluation---------54 3.3.1 Unit-Step and Ramp Input Test----54 3.3.2 Validation of Prediction Tracking Mechanism--63 3.4 Stability Analysis----------69 3.4.1 Description of System Stability-----70 3.5 Concluding Remark-----------72 CHAPTER IV DEVELOPMENT OF ANTENNA TRACKING PLATFORM AND SKY-NET SUBSYSTEM--------------73 4.1 The Proposed Architecture of Sky-Net-------73 4.2 STM32F Series MCU--------------74 4.2.1 Timer System of STM32F103 MCU----75 4.3 Ground Antenna Tracking Mechanism-------82 4.3.1 Microwave Transceiver------82 4.3.2 Mechanism Design--------87 4.3.3 Stepper Motor and Driver------92 4.3.3.1 Torque Calculation-------92 4.3.3.2 Stepper Motor Evaluation and Driving Circuit---------94 4.3.4 Embedded Control Board----------98 4.4 Mechanism for Airborne Antenna Stabilization----103 4.5 Concluding Remark----------105 CHAPTER V SYSTEM VERIFICATION VIA MAB ESTABLISHMENT-----106 5.1 MAB Quality Requirement--------------106 5.2 Flight Test Environment and LAFP-------108 5.3 Short Term Flight Antenna Tracking-----110 5.3.1 Short Term Flight Antenna Tracking with Mamdani Type Controller------110 5.3.2 Short Term Flight Antenna Tracking with PANFIS-----------123 5.4 Long Term Flight Antenna Tracking------137 5.5 Concluding Remark----------145 CHAPTER VI CONCLUSIONS--------------146 6.1 Conclusions--------------146 6.2 Further Works-----------147 REFERENCES------------148 VITA---------------152

    [1] A. K. Widiawan, R. Tafazolli, “High Altitude Platform Station (HAPS): A Review of New Infrastructure Development for Future Wireless Communication,” Journal of Wireless Personal Communication, Vol. 42, Issue 3, pp. 387-404.
    [2] Q. Feng, J. McGeehan, A. R. Nix, “Enhancing Coverage and Reducing Power Consumption in Peer-to-Peer Networks Through Airborne Relaying,” IEEE 65th Vehicular Technology Conference, April 22-25, 2007, pp. 954-958.
    [3] D. Grace, J. Thornton, G. Chen, G. P. White, T. C. Tozer, “Improving the System Capacity of Broadband Service Using Multiple High-Altitude Platforms,” IEEE Transactions on Wireless Communications, Vol. 4, No. 2, March 2005, pp. 700-709.
    [4] Z. E. O. Elshaikh, Md. R. Islam, A. F. Ismail, O. O. Khalifa, “High Altitude Platform for Wireless Communications and Other Services,” The 4th International Conference on Electrical and Computer Engineering, December 19-21, 2006, pp. 432-438.
    [5] H. Hariyanto, H. Santoso, A. K. Widiawan, “Emergency Broadband Access Network using Low Altitude Platform,” International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering, November 23-25, 2009, pp. 1-6.
    [6] A. Qiantori, A. B. Sutiono, H. Hariyanto, H. Suwa, T. Ohta, “An Emergency Medical Communications System by Low Altitude Platform at the Early Stages of a Natural Disaster in Indonesia,” Journal of Medical Systems, Vol. 36, Issue 1, February 2012, pp. 41-52.
    [7] W. Guo, C. Devine, Siyi Wang, “Performance Analysis of Micro Unmanned Airborne Communication Relays for Cellular Networks,” IEEE International Symposium on Communication Systems, Networks and Digital Processing, arXiv: 1407.0640v1 [cs.NI], July 2, 2014
    [8] D. Grace, J. Thornton, C. Spillard, T. Konefal, T. C. Tozer, “Broadband communications from a high-altitude platform: the European HeliNet programme,” Electronics & Communication Engineering Journal, Vol. 13, Issue 3, June 2001, pp. 138-144.
    [9] J. K. Barman, P. Konwar and G. Das, “Design of a PD like Fuzzy Logic Controller for Precise Positioning of a Stepper Motor,” ADBU-Journal of Engineering Technology, Vol. 1, 2014 pp.1-4.
    [10] E. H. Mamdani, S. Assilian, “An Experiment in Linquistic Synthesis with Fuzzy Logic Controller,” International Journal of Man-Machine Studies, Vol. 7, Issue 1, January 1975. pp. 1-13.
    [11] S. G. Tzafestas, K. M. Deliparaschos, G. P. Moustris, “Fuzzy Logic Path Tracking Control for Autonomous Non-Holonomic Mobile Robots: Design of System on a Chip,” Journal of Robotics and Autonomous Systems, Vol. 58, Issue8, August 2010, pp. 1017-1027.
    [12] R. Shoureshi and Z. Hu, “Tsukamoto-Type Neural Fuzzy Inference Network,” IEEE Proceedings of the American Control Conference, Vol. 4, Jun 2000, pp. 2463-2463.
    [13] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Modeling and Control,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 15, Issue 1, February 2005, pp. 116-132.
    [14] M. Amjad, M. I. Kashif, S. S. Abdullah, Z. Shareef, “Fuzzy Logic Control of Ball and Beam System,” International Conference on Education Technology and Computer (ICETC), June 2010, pp. 489-493.
    [14]
    [15] A. Kapun, A. Hace, K. Jezernik, “Identification of Stepping Motor Parameters,” International Conference on Computer as a Tool (EUROCON), Warsaw, September 2007, pp. 1856-1863.
    [16] L. Aguilar, P. Melin, O Castillo, “Intelligent Control of a Stepping Motor Drive using a Hybrid Neuro-Fuzzy ANFIS Approach,” Journal of Applied Soft Computing, Vol. 3, Issue 3, November 2003, pp.209-219.
    [17] K. Polat, S. Gunes, “An Expert System Approach Based on Principal Component Analysis and Adaptive Neuro-Fuzzy Inference System to Diagnosis of Diabetes Disease,” Journal of Digital Signal Processing, Vol. 17, Issue 4, July 2007, pp. 702-710.
    [18] J. S. R. Jang, “ANFIS : Adaptive-Network-Based Fuzzy Inference System,” Transaction on System, Man and Cybernetics, Vol. 23, Issue 3, August 2002, pp. 665-685.
    [19] P. Melin, O. Castillo, “Intelligent Control of a Stepping Motor Drive using an Adaptive Neuro–Fuzzy Inference System,” Journal of Information Sciences, Vol. 170, Issue2-4, February 2005, pp. 131-151.
    [20] K. Shimojima, T. Fukuda, Y. Hasegawa, “Self-Tuning Fuzzy Modeling with Adaptive Membership Function, Rule and Hierarchical Structure Based on Genetic Algorithm,” Journal of Fuzzy Set and Systems, Vol. 71, Issue 3, May 1995, pp. 295-309.
    [21] L. Gang, T. M. McGinnity, G. Prasad, “Design for Self-Organizing Fuzzy Neural Networks Based on Genetic Algorithms,” Journal of Transaction on Fuzzy Systems, Vol. 14, No. 6, December 2006, pp. 755-766.
    [22] G. Castellano, A. M. Fanelli, “Fuzzy Inference and Rule Extraction using a Neural Network,” Journal of Neural Network World, Vol. 3, 2000, pp.361-371.
    [23] H. Chongfu, M. Claudio, “Extracting fuzzy if–then rules by using the information matrix technique,” Journal of Computer and System Sciences, Vol. 70, Issue 1, February 2005, pp. 26-52.
    [24] C. H. Lee, C. C. Teng, “Fuzzy Inference and Rule Extraction using a Neural Network,” IEEE Transactions on Fuzzy Systems, Vol.8, No. 4, August 2000, pp. 349-366.
    [25] J-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Transactions on System, Man, and Cybernetics, Vol. 23, No. 3, May/June 1993, pp.665-685.
    [26] Y. Chai, L. Jia and Z. Zhang, “Mamdani Model based Adaptive Neural Fuzzy Inference System and its Application,” Journal of World Academy of Science, Engineering and Technology, Vol. 3, March 2009, pp. 739-746.

    下載圖示 校內:2020-07-16公開
    校外:2020-07-16公開
    QR CODE