| 研究生: |
顏世偉 Yan, Shi-Wei |
|---|---|
| 論文名稱: |
用於甲醇蒸氣重組反應產製氫氣
之銅鋅氧化物擔體觸媒之研究 A Study on the Supported CuO-ZnO Catalysts for Producing Hydrogen by Steam Reforming of Methanol |
| 指導教授: |
翁鴻山
Weng, Hung-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 甲醇蒸氣重組反應、銅鋅觸媒、添加氧化釤之氧化鈰 |
| 外文關鍵詞: | Steam reforming of methanol, Cu-Zn catalyst |
| 相關次數: | 點閱:78 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對由甲醇以水蒸氣重組反應製氫進行研究。挑選數種適合的觸媒,並以XRD、TPR、BET、SEM測定其基本物理與化學性質。接著做活性測試,在水與甲醇之莫耳比(S/C)為1.5,氧氣與甲醇之莫耳比(O/C)為0.3,反應溫度300℃之條件下,測定甲醇之轉化率、氫氣之生成率以及副產物一氧化碳之濃度,比較這些觸媒的性能。
首先以γ-Al2O3為擔體製備含不同比例CuO和ZnO之觸媒,發現除ZnO/γ-Al2O3之活性很差外,其他觸媒活性大致相同,然而使用CuO-ZnO為1:1之觸媒,CO濃度較低。若將CuO-ZnO之比例固定在1:1,而擔載在CeO2、SDC(添加氧化釤之氧化鈰)上時,發現擔載在SDC上的擔體觸媒之轉化率較低,但是其對CO的抑制較佳,推測可能是SDC表面提供了穩定的氧空洞,幫助CO氧化之結果。
接著,針對CuZn11/SDC(活性物CuO:ZnO為1:1,擔載在SDC上之擔體觸媒)改變反應溫度,發現在200℃下就可得到60 %之轉化率,而且CO濃度僅為2%而已。
此外,由改變反應前還原條件,以及長時間穩定性測試結果發現,這些改變對於活性的影響不大,因此推斷螢石結構的擔體SDC有助於抗燒結性與金屬分散度的提升。
若以低CO濃度,且在低溫下可獲得不錯的轉化率(60 %),為主要考量目標,則以CuZn11/SDC在200℃時之整體表現最佳。
This is a study on producing hydrogen by steam reforming of methanol. We choose several suitable catalysts for the reaction, and measuring the basic physical properties and chemical properties of these catalysts through the use of
XRD,TPR,BET,SEM. Subsequently, with controlling the experimental condition ,S/C(steam-to-methanol mole ratio)equal to 1.5 ,O/C(oxygen-to-methanol mole ratio)=0.3, and the reaction temperature=300 ℃, we determining the methanol conversion, the rate of hydrogen generation, and the concentration of the side product, carbon monoxide, and we can comprehend the performances of these catalysts thus.
First of all, we prepare γ-Alumina-supported catalysts which containing different CuO-ZnO ratios, and measure the activities of these samples. We found that all the catalysts have similar activity except ZnO/γ-Al2O3 catalyst which has bad activity. However, using the catalyst containing active component CuO-ZnO (1:1)as sample, the result shows a low CO concentration. Furthemore, fixing the CuO-ZnO ratio at 1:1, and supports it by CeO2 ,SDC(Samarium-Doped Ceria), we found that, although the SDC has a lower conversion, it has a better effect of restraining CO generation. We conjecture that the result is due to SDC surface offer stable oxygen vacancies, and these oxygen vacancies enhance the oxidization of CO.
Subsequently, Changing the reaction temperature of CuZn11/SDC(active component CuO:ZnO =1:1, supported on SDC), the methanol conversion reach 60 % at 200℃, and CO concentration is merely 2 %.
In addition, Changing the reduction condition before reaction, and testing the stability by a long time, we found that, these changes will not influence activity too much. Therefore, we deduce that the Fluorite-type structure is not only conducive to anti-sintering, but promoting the metal dispersion.
If our objective is getting low CO concentration at low temperature, and having a well conversion(60%)simultaneously, CuZn11/SDC has best performance at 200 ℃.
1. Adrian Cho, Science 299, 1684 (2003).
2. Aelion, R.,Loebel, A., and Eirich, F., Am. Chem. Soc. J., 72, 124, (1950).
3. Brinker, C. J., and Scherer, G. W., J. Non-Crystalline Solids, 70, 301, (1985).
4. Chalk, S.G., Milliken, J., Miller, J. F.,and Venkateswaran, S. R., J. Power Sources, 71, 26 (1998).
5. Christner, L. and Steinfeld,“Development of Partial Oxidizer/Reformer for PAFC Power Plants” , Final Report,Belvoir R&D Center,Contract No.DAAK 89-83-C-0035, (1985).
6. Cuzens, J .E. and Moard, D. M.,Proceeding of 1998 Fuel Cell Seminar, 689 (1998).
7. Dislich H., Angew. Chem. Int. Ed. Engl., 10, 363 (1971).
8. Gschneidner, K. A. Jr., and Eyring L. R., Handbook on the Physics and Chemistry of Rare Earths, Vol. 3, 83-85,370-373, North-Holland, New York, (1984).
9. Himmel, B., Gerber, T., and Burger, H., J. Non-Crystalline Solids, 91, 122 (1987).
10. Jin T., T.Okuhata, G. J. Mains, and J. M. White, J. Phys. Chem., 91, 3310 (1987).
11. Kirk, N. B., and Wood.J. V., J. Mater. Sci., 30,2171-2175 (1995).
12. Liu W., and Flytzani-Stephanopoulos M., J. of Catalysis, 153 (1995).
13. Loof P., B. Kasemo, S. Andersson, and A. Frestad, J. Catal., 130, 181(1991).
14. Meyer, A. P., Bett J. A. S., Vartanion G. and Sederquist R. V.,“Parametric Analysis of 1.5kW Methanol Fuel Cell Power Plan Designs ” , Final Report, Belvoir R&D Center, Contract No. DAAK 70-77-C-0195,(1978).
15. Pope, E. J. A., and Mackenzie, J. D., J. Non-Crystalline Solid, 46, 153 (1981).
16. R. Burch and A. R. Flambard, J. Catal., 78, 389(1982).
17. Sanchez M. G. and J. L. Gazquez, J. of Catalysis, 140, 120 (1987).
18. Steven S. A., J. A. Dumesic, R. T. K. Baker, and E. Ruckenstein,“Metal-Support Interactions in Catalysis, Sintering, and Redispersion”, Van Nostrand Reinhold Company, New York (1980).
19. Schaefer, D. W., and Keefer, K. D., Mater. Res. Soc. Symp. Proc., 73, 277 (1986).
20. Schmidt, H. K., Spie, 1758, Sol-Gel Optics Ⅱ, 396 (1992).
21. Schmidt, H. K., Oliveira, P. W., and Krug, H., Mat. Res. Soc. Symp. Proc. 436, 13 (1996).
22. Schmidt, H. K., Krug, H., Zeitz, B., and Geiter, E., Spie, 3136, Sol-Gel Optics Ⅳ, 220 (1997).
23. Schmidt, H. K., J. Sol-Gel Sci. and Tech., 8, 557 (1997).
24. Serre, Garin F., Belot G., and Maire G., J. of Catalysis, 141 (1993).
25. Tauster S. J., S. C. Fung, and R. L. Garten, J. Amer. Chem. Soc., 100, 170 (1978).
26. Tauster S. J., S. C. Fung, J. Catal., 29, 55 (1978).
27. Yahiro H., Eguchi Y., Eguchi K., and Arai H., J.Appl.Electroche.,18,157. (1987).
28. Yoldas, B. E., J. Non-Crystalline Solids, 51, 105 (1982).
29. Zerda, T. W., Artaki, I. and Jonas, J., J. Non-Crystalline Solids, 81, 365 (1986).
30. 王偉洪, 化工, 第7卷第4期, 65 (2000).
31. 柯子真,“奈米級金屬氧化物擔體觸媒用於以一氧化碳為還原劑之一氧化氮還原反應” ,國立成功大學化工系碩士論文 (2003).
32. 陳暉,陳姿秀,化工技術,第8卷第5期, 166 (2000).
33. 陳慧英, 化工技術, 第80期 (1999).
34. 謝文浩,“氧化釤添加氧化鈰/氧化鋁擔體擔載同觸媒行一氧化碳氧化反應之研究” , 國立清華大學化工系碩士論文 (1999).
35. 竇維平、王裕標和黃大仁,“導氧離子擔體對氧化銅觸媒之還原行為及行一氧化碳氧化之效應”,第十二屆台灣區觸媒及反應工程研討會, 49 (1994).