| 研究生: |
胡國威 Hu, Kuo-Wei |
|---|---|
| 論文名稱: |
發展金和釓為主之奈米粒子應用於生物醫學治療與診斷:熱治療,磁共振造影,非線性光學影像 Development of Gold- and Gadolinium-based Nanomaterials in Biological Diagnostic and Therapeutic Applications: Hyperthermia Therapy, MRI, Nonlinear Optics Microscopy |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 複合材料 、顯影劑 、光熱治療 |
| 外文關鍵詞: | hybrid material, contrast agent, photothermal therapy |
| 相關次數: | 點閱:74 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於奈米材料在縮小化後出現的嶄新特性以及尺度與生物分子相近,使得它們相當具有潛力成為新世代生醫領域應用的候選材料。近年來大量而廣泛的工作投入於材料的合成、控制組裝與修飾,無機奈米材料在生物醫學科技相關的應用在近年非常迅速的發展。許多生物科技應用的研究成果都證實了奈米材料的潛力,尤其在作為高敏感度以及具有選擇性的感應器或反應器時。高效能的奈米材料可有效降低對生物體注入試劑之劑量以及降低外來幅射輸出量的有效門檻並降低其可能帶來的副作用。此外,將具有不同性質且高效能之奈米粒子當作建構基材進一步人工或自行組裝為具有多重功能的單一材料也在近期逐漸被實現,這些成果大幅地展現奈米科技在生醫科技巨大的潛力。因此,具有高效能的奈米材料與多功能性的複合性材料不管在此刻還是將來都是相當具有研發潛力的一大方向。
本研究主要著重在發展具有治療與診斷效果之無機奈米材料並評估這些材料在實際應用的潛力。在本研究中我們合成了四種複合奈米材料,成分包含了金、銀、釓、矽等無機物,這些材料具有各自獨特的性質可提高顯影效果或是治療效果,分別為具有光熱治療效果,可作為光敏劑的金銀樹枝狀奈米結構;同時可作為光敏劑與可提升磁共振造影對比訊號的Gd2O(CO3)‧H2O/SiO2/金奈米殼層複合材料;同時可作為光敏劑與可提升非線性光學顯影對比的金奈米棒-金銀合金殼奈米結構;同時可提升磁共振造影對比訊號與可作為抗癌藥物傳遞載體的DOTA-釓錯合物接合之二氧化矽奈米管。除了分析與鑑定每個材料的成分與特性外,我們對所有的材料都進行了細胞毒性的測試以確定它們在生醫應用的適用性,然後從得到的結果評估材料的效能。結果顯示:金銀樹枝狀奈米結構具有光熱轉換的能力,且所需的輻射量比已被證實可作為光熱治療劑的金奈米棒還要低;Gd2O(CO3)‧H2O/SiO2/金奈米殼層複合材料不僅可提升磁共振造影信號,還可作為光熱治療劑,藉由精確地調控可以得到在兩者均有最佳表現的條件;金奈米棒-金銀合金殼奈米結構可同時作為光敏劑與提升非線性光學顯影對比,其效能比已被報導過的金奈米棒高;DOTA-釓錯合物接合之二氧化矽奈米管可提升水分子質子縱向弛緩速率,效能比DOTA-釓錯合物高數倍,此外,可同時作為藥物傳遞載體,將裝填的阿黴素導入癌細胞進行治療。
The properties arising from nanoscale effects and their comparable size to biomolecules have made nanomaterials act as potential candidates in next-generation biomedical applications. Progress in utilizing inorganic nanoparticles for biomedical applications has advanced rapidly due to the extensive amount of work done in the synthesis and modification of the materials. Nanomaterials have been proved promising in a wide range of biotechnological applications, especially as highly sensitive and selective sensors and reactors. Nanomaterials with high performance are feasible to significantly lower the dosage of external agents to bio-system and the threshold of radiation input, and then eliminate the possible side effect. Additionally, works related to the combination of different nanomaterials with a variety of properties and high performances have been reported in recent years, these results show that the nanomaterials exhibit great potential in biomedical applications. Therefore, developing nanomaterials with high efficacy and hybrid materials with multi-functionality is a highly promising subject regardless of now or future.
This study is aimed to the development of inorganic nanomaterials exhibiting the ability on diagnostics and therapeutics and the evaluation on their potential as applying to biotechnological field. We have fabricated four kinds of nano-scale hybrid materials containing inorganic species such as gold、silver、gadolinium or silicon. These materials include: AuxAg1-x dendrites, which converse the near-infrared radiation energy to heat effectively;Gd2O(CO3)‧H2O/SiO2/Au hybrid particles, which can be simultaneously served as magnetic resonance contrast agents and photothermal reactors;Au NR-in-shell nanostructures, which not only augment the nonlinear processes yield but also decrease the radiation threshold for the hyperthermia cancer therapy; DOTA-Gd complexes grafted silica nanotubes, which significantly enhance the relaxivity compared to DOTA-Gd complexes and can aslo be served as carriers for drug delivery to cancer cells. The results show several points as following : AuxAg1-x dendrites can effectively transfer the photon energy into heat, the required radiation for photothermal cancer therapy is significantly lower than that required for gold nanorods;Gd2O(CO3)‧H2O/SiO2/Au hybrid particles not only augment magnetic resonance signals but also can be served as photothermal therapeutic agents. By precise adjustment the optimal performance on magnetic resonance imaging and photothermal cancer therapy can be obtained;Au NR-in-shell nanostructures can simultaneously act as photothermal therapeutic agnets and nonlinear optic microscopy contrast agents, and they show higher efficacy than that of gold nanorods on both applications;DOTA-Gd complexes grafted silica nanotubes augment the longitudinal relaxation rate on protons of water molecules and exhibit higher efficiency than pure DOTA-Gd complexes for several times. On the other hand, they can also act as carriers for delivering doxorubicin molecules into HeLa cancer cells to induce therapeutic effect.
1. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B 2005, 109 (29), 13857-70.
2. Reetz, M. T.; Helbig, W., Size-Selective Synthesis of Nanostructured Transition Metal Clusters. J Am Chem Soc 2002, 116 (16), 7401-7402.
3. Sun, Y.; Mayers, B.; Xia, Y., Metal Nanostructures with Hollow Interiors. Adv Mater 2003, 15 (7-8), 641-646.
4. 蘇品書編譯, 超微粒子材料技術. 復漢出版社: 台南, 1989.
5. H. Fores, C. S., the Journal of the Minerals 1989, 12.
6. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G., Nanostructured plasmonic sensors. Chem Rev 2008, 108 (2), 494-521.
7. Mie`, G. Optical Properties of Colloidal Gold Solutions. Ann. Phys.1908`, 25`, 329.
8. Kuo, Y. C.; Jen, C. P.; Chen, Y. H.; Su, C. H.; Tsai, S. H.; Yeh, C. S., Assembly of hybrid oligonucleotide modified gold (Au) and alloy nanoparticles building blocks. J Nanosci Nanotechno 2006, 6 (1), 95-100.
9. Shieh, D. B.; Su, C. H.; Chang, F. Y.; Wu, Y. N.; Su, W. C.; Hwu, J. R.; Chen, J. H.; Yeh, C. S., Aqueous nickel-nitrilotriacetate modified Fe3O4-NH3+ nanoparticles for protein purification and cell targeting. Nanotechnology 2006, 17 (16), 4174-4182.
10. Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991, 354 (6348), 56-58.
11. New, R. R. C., Liposomes: A practical approach. Oxford University Press: Oxford, U.K.: 1990.
12. (a) El-Sayed, M. A., Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts Chem Res 2001, 34 (4), 257-264; (b) Link, S.; El-Sayed, M. A., Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 1999, 103 (40), 8410-8426.
13. Urbanska, K.; Romanowska-Dixon, B.; Matuszak, Z.; Oszajca, J.; Nowak-Sliwinska, P.; Stochel, G., Indocyanine green as a prospective sensitizer for photodynamic therapy of melanomas. Acta Biochimica Polonica 2002, 49 (2), 387-391.
14. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A., Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J Phys Chem B 2006, 110 (14), 7238-7248.
15. Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006, 128 (6), 2115-2120.
16. Loo, C.; Lin, A.; Hirsch, L.; Lee, M. H.; Barton, J.; Halas, N.; West, J.; Drezek, R., Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 2004, 3 (1), 33-40.
17. Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R., Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Letters 2005, 5 (4), 709-711.
18. Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L., Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Letters 2007, 7 (7), 1929-1934.
19. Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N., Gold Nanocages: Synthesis, Properties, and Applications. Accounts Chem Res 2008, 41 (12), 1587-1595.
20. Chen, J. Y.; Wang, D. L.; Xi, J. F.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z. Y.; Zhang, H.; Xia, Y. N.; Li, X. D., Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Letters 2007, 7 (5), 1318-1322.
21. (a) Mirkin, C. A., Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg Chem 2000, 39 (11), 2258-2272; (b) Nam, J. M.; Park, S. J.; Mirkin, C. A., Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc 2002, 124 (15), 3820-1.
22. Nam, J. M.; Thaxton, C. S.; Mirkin, C. A., Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003, 301 (5641), 1884-1886.
23. Sun, C. K.; Chu, S. W.; Chen, S. Y.; Tsai, T. H.; Liu, T. M.; Lin, C. Y.; Tsai, H. J., Higher harmonic generation microscopy for developmental biology. J Struct Biol 2004, 147 (1), 19-30.
24. Albota, M.; Beljonne, D.; Bredas, J. L.; Ehrlich, J. E.; Fu, J. Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Rockel, H.; Rumi, M.; Subramaniam, C.; Webb, W. W.; Wu, X. L.; Xu, C., Design of organic molecules with large two-photon absorption cross sections. Science 1998, 281 (5383), 1653-1656.
25. Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W., Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300 (5624), 1434-1436.
26. (a) Farrer, R. A.; Butterfield, F. L.; Chen, V. W.; Fourkas, J. T., Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles. Nano Letters 2005, 5 (6), 1139-1142; (b) Sonnichsen, C.; Alivisatos, A. P., Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Letters 2005, 5 (2), 301-304; (c) Wang, H. F.; Huff, T. B.; Zweifel, D. A.; He, W.; Low, P. S.; Wei, A.; Cheng, J. X., In vitro and in vivo two-photon luminescence imaging of single gold nanorods. P Natl Acad Sci USA 2005, 102 (44), 15752-15756; (d) Yelin, D.; Oron, D.; Thiberge, S.; Moses, E.; Silberberg, Y., Multiphoton plasmon-resonance microscopy. Opt Express 2003, 11 (12), 1385-1391; (e) Tai, S. P.; Wu, Y.; Shieh, D. B.; Chen, L. J.; Lin, K. J.; Yu, C. H.; Chu, S. W.; Chang, C. H.; Shi, X. Y.; Wen, Y. C.; Lin, K. H.; Liu, T. M.; Sun, C. K., Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles. Adv Mater 2007, 19 (24), 4520-+; (f) Liu, T. M.; Tai, S. P.; Yu, C. H.; Wen, Y. C.; Chu, S. W.; Chen, L. J.; Prasad, M. R.; Lin, K. J.; Sun, C. K., Measuring plasmon-resonance enhanced third-harmonic chi((3)) of Ag nanoparticles. Appl Phys Lett 2006, 89 (4), -; (g) Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yakar, A., Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 2007, 7 (4), 941-5.
27. Zipfel, W. R.; Williams, R. M.; Webb, W. W., Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnology 2003, 21 (11), 1368-1376.
28. (a) Ueno, K.; Juodkazis, S.; Mizeikis, V.; Sasaki, K.; Misawa, H., Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths. Adv Mater 2008, 20 (1), 26-+; (b) Imura, K.; Okamoto, H.; Hossain, M. K.; Kitajima, M., Near-field imaging of surface-enhanced Raman active sites in aggregated gold nanoparticles. Chem Lett 2006, 35 (1), 78-79.
29. Imura, K.; Nagahara, T.; Okamoto, H., Photoluminescence from gold nanoplates induced by near-field two-photon absorption. Appl Phys Lett 2006, 88 (2), -.
30. Moran, A. M.; Sung, J. H.; Hicks, E. M.; Van Duyne, R. P.; Spears, K. G., Second harmonic excitation spectroscopy of silver nanoparticle arrays. J Phys Chem B 2005, 109 (10), 4501-4506.
31. Imura, K.; Kim, Y. C.; Kim, S.; Jeong, D. H.; Okamoto, H., Two-photon imaging of localized optical fields in the vicinity of silver nanowires using a scanning near-field optical microscope. Physical Chemistry Chemical Physics 2009, 11 (28), 5876-5881.
32. Jung, Y.; Tong, L.; Tanaudommongkon, A.; Cheng, J. X.; Yang, C., In Vitro and In Vivo Nonlinear Optical Imaging of Silicon Nanowires. Nano Letters 2009, 9 (6), 2440-2444.
33. Johnson, J. C.; Yan, H. Q.; Schaller, R. D.; Petersen, P. B.; Yang, P. D.; Saykally, R. J., Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires. Nano Letters 2002, 2 (4), 279-283.
34. Marckmann, P.; Skov, L.; Rossen, K.; Dupont, A.; Damholt, M. B.; Heaf, J. G.; Thomsen, H. S., Nephrogenic Systemic Fibrosis: Suspected Causative Role of Gadodiamide Used for Contrast-Enhanced Magnetic Resonance Imaging. J Am Soc Nephrol 2006, 17 (9), 2359-2362.
35. Su, C. H.; Sheu, H. S.; Lin, C. Y.; Huang, C. C.; Lo, Y. W.; Pu, Y. C.; Weng, J. C.; Shieh, D. B.; Chen, J. H.; Yeh, C. S., Nanoshell magnetic resonance imaging contrast agents. J Am Chem Soc 2007, 129 (7), 2139-46.
36. Li, I.-F.; Su, C.-H.; Sheu, H.-S.; Chiu, H.-C.; Lo, Y.-W.; Lin, W.-T.; Chen, J.-H.; Yeh, C.-S., Gd2O(CO3)2‧H2O Particles and the Corresponding Gd2O3: Synthesis and Applications of Magnetic Resonance Contrast Agents and Template Particles for Hollow Spheres and Hybrid Composites. Adv Funct Mater 2008, 18 (5), 766-776.
37. Trentin, D.; Hubbell, J.; Hall, H., Non-viral gene delivery for local and controlled DNA release. J Control Release 2005, 102 (1), 263-75.
38. Kim, J.; Park, S.; Lee, J. E.; Jin, S. M.; Lee, J. H.; Lee, I. S.; Yang, I.; Kim, J. S.; Kim, S. K.; Cho, M. H.; Hyeon, T., Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Ed Engl 2006, 45 (46), 7754-8.
39. Huang, C.-C.; Su, C.-H.; Li, W.-M.; Liu, T.-Y.; Chen, J.-H.; Yeh, C.-S., Bifunctional Gd2O3/C Nanoshells for MR Imaging and NIR Therapeutic Applications. Adv Funct Mater 2009, 19 (2), 249-258.
40. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 2003, 100 (23), 13549-54.
41. Shi, F.; Song, Y. Y.; Niu, H.; Xia, X. H.; Wang, Z. Q.; Zhang, X., Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction. Chem Mater 2006, 18 (5), 1365-1368.
42. Sun, X. P.; Hagner, M., Novel preparation of snowflake-like dendritic nanostructures of Ag or Au at room temperature via a wet-chemical route. Langmuir 2007, 23 (18), 9147-9150.
43. (a) Lee, G. J.; Shin, S. I.; Oh, S. G., Preparation of silver dendritic nanoparticles using sodium polyacrylate in aqueous solution. Chem Lett 2004, 33 (2), 118-119; (b) Wu, W. T.; Pang, W. M.; Xu, G. Y.; Shi, L.; Zhu, Q. R.; Wang, Y. S.; Lu, F., In situ formation of Ag flowerlike and dendritic nanostructures in aqueous solution and hydrolysis of an amphiphilic block copolymer. Nanotechnology 2005, 16 (10), 2048-2051.
44. Fang, J. X.; You, H. J.; Kong, P.; Yi, Y.; Song, X. P.; Ding, B. J., Dendritic silver nanostructure growth and evolution in replacement reaction. Cryst Growth Des 2007, 7 (5), 864-867.
45. Fukuyo, T.; Imai, H., Morphological evolution of silver crystals produced by reduction with ascorbic acid. J Cryst Growth 2002, 241 (1-2), 193-199.
46. Zijlstra, P.; Bullen, C.; Chon, J. W.; Gu, M., High-temperature seedless synthesis of gold nanorods. J Phys Chem B 2006, 110 (39), 19315-8.
47. (a) Takahashi, H.; Niidome, Y.; Niidome, T.; Kaneko, K.; Kawasaki, H.; Yamada, S., Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir 2006, 22 (1), 2-5; (b) Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D., Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1 (3), 325-7.
48. (a) Tong, L.; Zhao, Y.; Huff, T. B.; Hansen, M. N.; Wei, A.; Cheng, J. X., Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater 2007, 19 (20), 3136-+; (b) Takahashi, H.; Niidome, T.; Nariai, A.; Niidome, Y.; Yamada, S., Gold nanorod-sensitized cell death: Microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods. Chem Lett 2006, 35 (5), 500-501; (c) Norman, R. S.; Stone, J. W.; Gole, A.; Murphy, C. J.; Sabo-Attwood, T. L., Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Letters 2008, 8 (1), 302-306.
49. Lambert, T. N.; Andrews, N. L.; Gerung, H.; Boyle, T. J.; Oliver, J. M.; Wilson, B. S.; Han, S. M., Water-soluble germanium(0) nanocrystals: Cell recognition and near-infrared photothermal conversion properties. Small 2007, 3 (4), 691-699.
50. (a) Zharov, V. P.; Mercer, K. E.; Galitovskaya, E. N.; Smeltzer, M. S., Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophysical Journal 2006, 90 (2), 619-627; (b) Zharov, V. P.; Letfullin, R. R.; Galitovskaya, E. N., Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters. J Phys D Appl Phys 2005, 38 (15), 2571-2581; (c) Zharov, V. P.; Galitovskaya, E. N.; Johnson, C.; Kelly, T., Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy (vol 37, pg 219, 2005). Laser Surg Med 2005, 37 (4), 329-329; (d) El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A., Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006, 239 (1), 129-135.
51. (a) O'Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L., Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004, 209 (2), 171-176; (b) Larson, T. A.; Bankson, J.; Aaron, J.; Sokolov, K., Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 2007, 18 (32), -.
52. Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H. J., Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. P Natl Acad Sci USA 2005, 102 (33), 11600-11605.
53. Salgueirino-Maceira, V.; Correa-Duarte, M. A.; Farle, M.; Lopez-Quintela, A.; Sieradzki, K.; Diaz, R., Bifunctional gold-coated magnetic silica spheres. Chem Mater 2006, 18 (11), 2701-2706.
54. Lee, J.; Yang, J.; Ko, H.; Oh, S. J.; Kang, J.; Son, J. H.; Lee, K.; Lee, S. W.; Yoon, H. G.; Suh, J. S.; Huh, Y. M.; Haam, S., Multifunctional magnetic gold nanocomposites: Human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Adv Funct Mater 2008, 18 (2), 258-264.
55. Milella, M.; Jacobelli, J.; Cavallo, F.; Guarini, A.; Velotti, F.; Frati, L.; Foa, R.; Forni, G.; Santoni, A., Interleukin-2 gene transfer into human transitional cell carcinoma of the urinary bladder. Br J Cancer 1999, 79 (5-6), 770-9.
56. Mooradia.A, Photoluminescence of Metals. Phys Rev Lett 1969, 22 (5), 185-&.
57. Imura, K.; Nagahara, T.; Okamoto, H., Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J Phys Chem B 2005, 109 (27), 13214-13220.
58. Boyd, G. T.; Yu, Z. H.; Shen, Y. R., Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys Rev B 1986, 33 (Copyright (C) 2009 The American Physical Society), 7923.
59. Liu, M. Z.; Guyot-Sionnest, P., Synthesis and optical characterization of Au/Ag core/shell nanorods. J Phys Chem B 2004, 108 (19), 5882-5888.
60. (a) Takahashi, H.; Niidome, Y.; Niidome, T.; Kaneko, K.; Kawasaki, H.; Yamada, S., Modification of Gold Nanorods Using Phosphatidylcholine to Reduce Cytotoxicity. Langmuir 2005, 22 (1), 2-5; (b) Ding, H.; Yong, K.-T.; Roy, I.; Pudavar, H. E.; Law, W. C.; Bergey, E. J.; Prasad, P. N., Gold Nanorods Coated with Multilayer Polyelectrolyte as Contrast Agents for Multimodal Imaging. The Journal of Physical Chemistry C 2007, 111 (34), 12552-12557.
61. Lide, D. R., Ed., CRC Handbook of Chemistry and Physics. 79th ed. ed.; CRC Press: Boca Raton, 1998.
62. Popplewell, J. F.; King, S. J.; Day, J. P.; Ackrill, P.; Fifield, L. K.; Cresswell, R. G.; di Tada, M. L.; Liu, K., Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry. J Inorg Biochem 1998, 69 (3), 177-80.
63. Mitchell, D. T.; Lee, S. B.; Trofin, L. c. m.; Li, N.; Nevanen, T. K.; Soderlund, H.; Martin, C. R., Smart Nanotubes for Bioseparations and Biocatalysis. J Am Chem Soc 2002, 124 (40), 11864-11865.
64. Stober, W.; Fink, A.; Bohn, E., Controlled Growth of Monodisperse Silica Spheres in Micron Size Range. J Colloid Interf Sci 1968, 26 (1), 62-69.
65. Laus, S.; Sour, A.; Ruloff, R.; Toth, E.; Merbach, A. E., Rotational dynamics account for pH-dependent relaxivities of PAMAM dendrimeric, Gd-based potential MRI contrast agents. Chemistry 2005, 11 (10), 3064-76.
66. Zunino, F.; Capranico, G., DNA topoisomerase II as the primary target of anti-tumor anthracyclines. Anticancer Drug Des 1990, 5 (4), 307-17.