| 研究生: |
汪信全 Wang, Hsin-Chuan |
|---|---|
| 論文名稱: |
磷化鋁鎵銦及氮化銦鎵相關發光二極體之研製 Investigation and Fabrication of AlGaInP and InGaN-based Light Emitting Diodes |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 磷化鋁鎵銦 、氮化銦鎵 、發光二極體 、白光 |
| 外文關鍵詞: | AlGaInP, White Light, InGaN, Light Emitting Diode |
| 相關次數: | 點閱:81 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文共提出六種方法來改善未來的固態照明元件:磷化鋁鎵銦及氮化銦鎵發光二極體。有四項是關於磷化鋁鎵銦亮度提升及可靠度改善的研究,另外二項是關於氮化銦鎵亮度及抗靜電能力提升的研究。最後我們提出並試製新穎的白色發光二極體。
於磷化鋁鎵銦發光二極體的研究範疇中,我們提出以調變摻雜P型磷化鎵/磷化銦鎵超晶格的方式,改善習知結構的電流分散能力,並嘗試藉由動態電阻的變化來解釋電流分散能力的差異。經超晶格的輔助,亮度於20毫安培操作下可提升16%;另外由電激光的光譜中亦發現熱效應有明顯減小的趨勢。接著我們研究不同電流阻障深度,對不同尺寸的磷化鋁鎵銦發光二極體之光電特性影響。研究發現:電流阻障層的位置愈深,對亮度提升愈有幫助但操作電壓會有不同幅度的相對提升。於20毫安培操作下,小尺寸的元件亮度可提升19%而大尺寸可提升13%。第三個研究為網狀接觸層概念的提出。經由接觸層的調變,除了元件亮度可大幅提升外,元件可靠度亦較習知結構佳。於本研究中我們亦由數值計算來証明載子於網狀接觸元件中的均勻分佈,並進而可推測接觸層經網狀調變後對發光二極體所增加的亮度幅度,其與實驗值十分接近。此外,我們亦建立一套接面溫度量測系統,其量測值與熱影像結果差距不大且趨勢一致。第四個研究為硫化披覆對磷化鋁鎵銦發光二極體的影響。經硫化處理後,反向漏電流降低為原來的千分之一且亮度亦有所提升。由變溫反向電流的量測中,我們發現硫化後的元件,其活化能十分接近能隙的一半,這表示硫化處理的確對磷化鋁鎵銦發光二極體的邊緣接面提供完美的修補,使漏電流直接反應出元件空乏區的產生電流。透過掃描式探針顯微鏡(SPM)量得的表面型態,我們發現浸泡硫化銨愈久,磷化鎵表面愈平坦,故排除亮度提升與臨界角全反射損失有關;透過穿透率的模擬我們亦排除亮度提升與佛瑞斯奈耳損失有關。最後藉著注入電流與亮度改善比例的關係,我們合理的解釋了光輸出的增加主要是來自載子注入效率的提升。
於氮化銦鎵發光二極體的研究範疇中,首先我們提出了橫向電流阻障結構的概念。橫向電流阻障結構帶來亮度的提升,但由於有效面積的減少而使得操作電壓微升。由不同組態的電流阻障結構中,我們認為亮度的提升主要是來自電流分佈的改善而非光萃取效率的增加。於第二個研究中,我們發現P型氮化銦鎵/氮化鎵超晶格可改善氮化銦鎵發光二極體抗靜電能力,由原本人體量測模型下的490伏特提升至600伏特。本論文首次提出靜態及動態的等效電容模型,舉証電容的大小乃至有效面積與二極體反向抗靜電能力有某種程度上的關連性。透過變溫霍爾效應的量測,可得到P型氮化鎵的活化能為157毫電子伏特而P型氮化銦鎵/氮化鎵超晶格的活化能則大幅降為91毫電子伏特。我們推測電洞經超晶格壓電場的效應得到大幅度的增加,使得P型氮化銦鎵/氮化鎵超晶格於室溫的電阻率降低為0.59 -cm。由元件崩潰位置的分佈,推測此導電性的提升有助於改善電場的均勻度,故為提升元件抗靜電能力的原因之一。另外具超晶格的元件有較大的反向電容值,由電路分析的觀點,亦可合理解釋其為提升抗靜電能力的原因。
本論文最後提出一種串座型態(tandem-type)的白光二極體。此種白光二極體目前尚無其他研究團隊提出,其特點是製程簡單,不須搭配螢光物質及只須單一驅動電源。目前初步試製的白光發光效率於20毫安培下為14.56流明/瓦。
In this dissertation, six approaches are presented to improve future solid-state lighting devices: AlGaInP and InGaN LEDs. Therein, four approaches are related to how to promote the brightness and improve the reliability for AlGaInP LEDs. Another two are concerning the promotion of brightness and ESD withstand voltage for InGaN LEDs. Finally, we also proposed and fabricated an alternative white LED.
In respect of research on AlGaInP LEDs, we have proposed a modulation-doped GaP/InGaP superlattice to improve the current-spreading ability of conventional structure and tried to explain the functioning of superlattice by means of the dynamic resistance versus applied voltage. With the benefit of superlattice, the luminous intensity was increased to 1.16 times higher than that of conventional structure. In addition, less heating effect was observed in terms of the EL spectra with different operating current. Then we investigated the effect of blocking depth on the optoelectronic characteristics of AlGaInP LEDs with different chip size. It was found that deeper blocking layer led to higher luminous intensity but sacrifice the electric property, i.e., the forward voltage was slightly increased. Under the operation of 20 mA, the brightness of AlGaInP LEDs with small size increased to 1.19 times and that with large size increased to 1.16 times. The third approach is about the concept of meshed contact layer applied to ITO-assisted AlGaInP LEDs. Via the modification of contact layer, not only the brightness was significantly increased but the reliability was better than conventional structures. In this study, we performed numerical calculation to verify the uniform distribution of injected carriers for the proposed structure with a meshed contact layer. Utilizing the calculation results can roughly estimate the increased ratio contributed by the application of meshed contact layer. Besides, we also developed a measurement system for junction temperature of devices. The fourth research reported the effect of sulfide passivation on AlGaInP LEDs. The reverse leakage current of AlGaInP LEDs with passivation was dramatically reduced to be one thousandth of that without passivation. Meanwhile, the brightness was thus increased. We also found that the activation energy, calculated from logarithmic reverse current versus inverse temperature, was close to half of energy band gap of constituent material. This indicates the sulfide passivation can perfectly mend the leaky junction along the perimeter of AlGaInP LEDs, so the generation current within the depletion region can strongly dominate the reverse leakage current. From the surface morphology measured by scanning probe microscopy (SPM), we found that the GaP surface got smoother with the longer time, taken for immersing LEDs into sulfide solution. It suggested that the brightness increase have nothing to do with the critical angle loss. Based on the simulation of transmittance, on the other hand, we also exclude the fresnel loss from the possible mechanisms responsible for brightness increase. It was finally concluded that the effective carrier injection is the primary cause for the brightness increase.
With regard to the research on InGaN LEDs, we first proposed a lateral current-blocking structure to promote the brightness. The operating voltage was also increased due to the decrease of contact area. After comparing the performance of InGaN LEDs with different configuration of lateral current-blocking holes, we concluded that the brightness increase mainly resulted from the improvement of lateral current-spreading instead of the enhancement of light extraction. Next, we paid attention to the investigation into the ESD issue of InGaN LEDs. It was found that the p-type InGaN/GaN superlattice enabled the InGaN LED to withstand higher voltage (from 490 V to 600 V) under Human-Body-Model test condition. We first proposed an equivalent capacitor model, by which it was shown that the ESD robustness has something to do with the capacitance and effective area of devices. The activation energy of p-GaN was 157 meV and that of p-superlattice was 91 meV, which were measured by temperature-dependent Hall Effect Measurement. Due to the piezoelectric field of superlattice, the hole concentration was substantially increased, resulting in a lower resistivity of 0.59 -cm. Judging from where the breakdown happens and material melts, we think low resistivity of p-superlattice assisting in uniformity of electric field all over the device is one of the reasons for enhancing ESD robustness. On the other hand, the InGaN LED of larger reverse capacitance can also reasonably account for the enhancement of ESD robustness in view of the circuit analysis.
At last, a tandem-type white LED was proposed and successfully fabricated. Its features lie in simple fabrication process free of fluoresced material and requirement of single driving circuit. So far the luminous efficiency of the original tandem-type white LED is 14.56 lm/W at an operating current of 20 mA.
[1] H. J. Round, “A note on carborundum,” Electrical World, vol. 19, p. 309, 1907.
[2] G. Desriau, “Scintillations of zinc sulfides with alpha-rays,” J. Chiie Physique, vol. 33, p.587, 1936.
[3] H. Welker, “On new semiconducting compounds,” Zeitschrift fuer Naturforschung 7a, p. 744, 1952.
[4] Jr. N. Holonyak, and S. F. Bevacqua, “Coherent (visible) light eission from Ga(As1-xPx) junctions,” Appl. Phys. Lett., vol. 1, p. 82, 1962.
[5] W. O. Groves, A. H. Herzog, and M. G. Craford, “The effect of nitrogen doping on GaAs1-xPx electroluminescent diodes,” Appl. Phys. Lett., vol. 19, p. 184, 1971.
[6] W. O. Groves, and A. S. Epstein, “Epitaxial deposition of III-V compounds containing isoelectronic impurities,” US Patent 4,001,056 issued Jan. 4, 1977.
[7] R. A. Logan, H. G. White, and W. Wiegmann, “Efficient green electroluminescent junctions in GaP,” Solid State Electronics, vol. 14, p. 55, 1971.
[8] Zh. I. Alferov, V. M. Andre, D. Z. Garbuzov, and Rumyantsev, Sov. Phys.—Semicond., vol. 9, p. 305, 1975.
[9] J. Nishizawa and K. Suto, “Minority-carrier lifetime measurements of efficient GaAlAs p-n heterojunctions ,” J. Appl. Phys., vol. 48, pp. 3484, 1977.
[10] K. Kobayashi, S. Kawata, A. Gomyo, I. Hino, and T. Suzuki, “Room-temperature cw operation of AlGaInP double-heterosturcture visible lasers,” Electron. Lett., vol. 21, p. 931, 1985.
[11] K. Itaya, M. Ishikawa, and Y. Uematsu, “636 nm room temperature cw operation by heterobarrier blocking structure InGaAlP laser diodes,” Electron. Lett., vol. 26, p. 839, 1990.
[12] K. H. Huang and T. P. Chen, “Light-emitting diode structure,” U.S. Patent 5,661,742, 1997.
[13] H. Sugawara, K. Itaya, M. Ishikawa and G. Hatakoshi, “High-efficiency InGaAlP visible light-emitting diodes,” Jpn. J. Appl. Phys., vol. 31, pp. 2446-2451, vo. 8, 15 August 1992.
[14] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett., vol.57, pp. 2937-2939, 1990.
[15] H. Sugawara, M. Ishikawa, N. Yoshihiro, Y. Nishikawa, and S. Naritsuka, “Semiconductor light emitting device,” U.S. Patent 5 048 035, Sep. 10, 1991.
[16] S. J. Chang, C. S. Chang, Y. K. Su, P. T. Chang, Y. R. Wu, K. H. Huang and T. P. Chen, “AlGaInP multiquantum well light-emitting diodes,” IEE Proceedings—Optoelectronics, vol. 144, p. 1, 1997.
[17] K. H. Huang and T. P. Chen, “Light-emitting diode structure,” U.S. Patent 5,661,742, 1997.
[18] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 2839-2841, May 23, 1994.
[19] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, Member, IEEE, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 310-320, 2002.
[20] H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapour-deposited single-crystal-line GaN,” Appl. Phys. Lett., vol. 15, p. 327, 1969.
[21] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeryheiser, “Electroluminescence in GaN,” J. Luminescence, vol. 4, p. 63, 1971.
[22] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-Type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. Part 2, vol. 28, pp. L2112-L2114, 1989.
[23] S. Nakamura, N. Iwasa, and M. Senoh, “Method of manufacturing p-type compound semiconductor,” U.S. Patent 5,306,662, 1994.
[24] S. Nakamura and T. Mukai, “High-quality InGaN films grown on GaN films,” Jpn. J. Appl. Phys., vol. 31, p. L457, 1992.
[25] P. Kung, C. J. Sun, A. Saxler, H. Ohsato, and M. Razeghi, “Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates,” J. Appl. Phys., vol. 75, pp. 4515-4519, 1 May 1994.
[26] S. Tanaka, M. Takeuchi and Y. Aoyagi, “Anti-surfactant in III-nitride epitaxy—quantum dot formation and dislocation termination—,” Jpn. J. Appl. Phys., vol. 39, pp. L 831–L 834, 15 August 2000.
[27] O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, “Narrow photoluminescence peaks from localized states in InGaN quantum dot structures,” Appl. Phys. Lett., vol. 76, no. 17, pp. 2361-2363, 24 April 2000.
[28] S. Nakamura, "Status of GaN LEDs and lasers for solid-state lighting and displays," OIDA Solid-State Lighting Workshop, Albuquerque, May 30, 2002.
[29] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, "High dislocation densities in high-efficiency GaN-based light-emitting diodes," Appl. Phys. Lett., vol. 66, p. 1249, 1995.
[30] G. B. Stringfellow, “Semiconductors and Semimetals,” (W. T. Tsang, ed.), vol. 22, pp. 209-259, Academic Press, New York, 1985.
[31] H. C. Casey, M. B. Panish, “Heterostructure lasers: part B, materials and operating characteristics,” Academic Press, New York, 1978.
[32] G. B. Stringfellow, “Organometallic vapor phase epitaxy: theory and practice,” Academic Press, San Diego, CA, 1989.
[33] M. Fukuda, “Optical Semiconductor Devices,” chapter 6, John Wiley & Sons, Inc., pp. 309-311, 1999.
[34] M. Fukuda, “Reliability and Degradation of Semiconductor Lasers and LEDs,” Artech House, p. 56, 1991.
[35] “Human body model (HBM) electrostatic discharge sensitivity testing standard,” EOS/ESD-S5.1 Rev. 1, EOS/ESD Association, Inc., Rome, NY, 1993.
[36] “Machine model (MM) electrostatic discharge sensitivity testing standard EOS/ESD-S5.2,” EOS/ESD Association, Inc., Rome, NY, 1994.
[37] C. H. Chen, S. A. Stockman, M. J. Peanasky, and C. P. Kuo, “MOVPE growth of AlGaInP for high-efficiency visible light-emitting diodes” in “High brightness light emitting diodes,” edited by G. B. Stringfellow and M. G. Craford, Semiconductors and Semimetals vol. 48, Academic Press, San Diego, 1997.
[38] K. Kadoiwa, M. Kato, T. Motoda, T. Ishida, N. Fujii, N. Hayafuji, M. Tsugami, T. Sonoda, S. Takamiya and S. Mitsui, J. Crystal Growth, vol. 145, pp. 147–52, 1994
[39] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett., vol.57, pp. 2937-2939, 1990.
[40] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” Appl. Phys. Lett., vol.58, pp. 1010-1012, 1991.
[41] K. Itaya, M. Ishikawa, Y. Watanabe, K. Nitta, G. Hatakoshi and Y. Uematsu, “A new transverse-mode stabilized InGaAlP visible light laser diode using p-p isotype heterobarrier blocking,” Jpn. J. Appl. Phys., vol. 27, pp. L2414-L2416, 1988.
[42] H. Sugawara, M. Ishikawa, Y. Kokubun, Y. Nishikawa, S. Naritsuka, K. Itaya, G. Hatakoshi, and M. Suzuki, “Semiconductor light emitting device,” U.S. Patent. 5,153,889, 1992.
[43] G. B. Palmer, K. R. Poeppelmeier and T. O. Mason, “Conductivity and transparency of ZnO/SnO2-Cosubstituted In2O3,” Chem. Mater., vol. 9, pp. 3121-3126, 1997.
[44] G. B. Stringfellow, M. George Craford, “High brightness light emitting diodes,” Semiconductors and Semimetals, vol. 48, p. 174, 1997.
[45] S. W. Corzine, R. H. Yan, and L. A. Coldren, “A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks,” IEEE J. Select. Topics Quantum Electron., vol. 27, no. 9, pp. 2086-2090, 1991.
[46] H. Sugawara, K. Itaya, and G. Hatakoshi, “Characteristics of a distributed Bragg reflector for the visible-light spectral region using InGaAlP and GaAs: Comparison of transparent- and loss-type structures,” J. Appl. Phys., vol. 74, pp. 3189-3193, 1993.
[47] S. W. Chiou, C. P. Lee, C. K. Huang and C. W. Chen, “Wide angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes,” J. Appl. Phys., vol. 87, pp. 2052-2054, 15 February 2000.
[48] W. I. Lee, “Wide bandwidth AlAs/AlGaAs tandem Bragg reflectors grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett., vol. 67, pp. 3753-3755, 18 December 1995.
[49] T. Kawai, H. Yonezu, Y. Ogasawara, D. Saito, and K. Pak, “Suppression of threading dislocation generation in highly lattice mismatched heteroepitaxies by strained short-period superlattices,” Appl. Phys. Lett., vol.63, pp. 2067-2069, 1993.
[50] M. Nakayama, K. Kubota, H. Kato, S. Chika, and N. Sano, “Effects of buffer layers in GaAs-In0.2Al0.8As strained-layer superlattices,” Appl. Phys. Lett., vol.48, pp. 281-283, 1986.
[51] K. Kumakura, T. Makimoto, and N. Kobayashi, “Efficient hole generation above 1019 cm-3 in Mg-doped InGaN/GaN superlattices at room temperature,” Jpn. J. Appl. Phys. vol. 39, pp. L 195–L 196, 2000.
[52] C. K. Peng, G. Ji, N. S. Kumar, and H. Morkoc, “Extremely low resistance nonalloyed ohmic contacts on GaAs using InAs/InGaAs and InAs/GaAs strained-layer superlattices,” Appl. Phys. Lett., vol.53, pp. 900-901, 1988.
[53] J. K. Sheu, G. C. Chi, and M. J. Jou, “Low-operation voltage of InGaN/GaN light-emitting diodes by using a Mg-doped Al0.15Ga0.85N/GaN Superlattice,” IEEE Electron Device Lett., vol. 22, pp. 160-162, 2001.
[54] M. H. MacDougal, P. D. Dapkus, A. E. Bond, C. K. Lin, and J. Geske, “Design and fabrication of VCSEL’s with AlxOy-GaAs DBR’s,” IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 905-915, 1997.
[55] C. Y. Lee, M. C. Wu, H. P. Shiao, W. J. Ho, “Temperature dependence of photoluminescence from InAsP/InP strained quantum well structures grown by metalorganic chemical vapor deposition,” J. Cryst. Growth, vol. 208, pp. 137-144, 2000.
[56] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 2839-2841, May 23, 1994.
[57] F. A. Kish, D. A. Vanderwater, M. J. Peanasky, M. J. Ludowise, S. G. Hummel, and S. J. Rosner, “Low-resistance Ohmic conduction across compound semiconductor wafer-bonded interfaces,” Appl. Phys. Lett., vol. 67, pp. 2060-2062, October 2, 1995.
[58] R. H. Horng, D. S. Wuu, S. C. Wei, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology,” Appl. Phys. Lett., vol. 75, pp. 154-156, July 12, 1999.
[59] K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 321-332, 2002.
[60] C. A. Gaw, S. Ariz, D. L. Rode, St. Louis, “Electrical Contact for an LED,” U.S. Pat. No. 4 864 370, Sep. 5, 1989.
[61] H. Sugawara, M. Ishikawa, N. Yoshihiro, Y. Nishikawa, and S. Naritsuka, “Semiconductor Light Emitting Device,” U.S. Patent 5 048 035, Sep. 10, 1991.
[62] H. Sugawara, K. ltaya, H. Nozaki, and G. Hatakoshi, “High-brightness lnGaAlP green light-emitting diodes,” Appl. Phys. Lett., vol. 61, pp. 1775-1777, 1992.
[63] B. J. Lee, C. M. Chang, and M. J. Jou, “Light emitting diodes and method of manufacturing the same,” U.S. Patent 5 717 226, Feb. 10, 1998.
[64] G. B. Stringfellow, M. George Craford, “High brightness light emitting diodes,” Semiconductors and Semimetals, vol. 48, pp. 172-176, 1997.
[65] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” Journal of Luminescence, vol. 99, pp. 149-154, 2002.
[66] Y. H. Aliyu, D. V. Morgan, H. Thomas, and S. W. Bland, “AlGaInP LEDs using reactive thermally evaporated transparent conducting indium tin oxide(ITO),” Electronics Letters, vol. 31, pp. 2210-2212, 1995.
[67] D. V. Morgan, I. M. Alofi, and Y. H. Aliyu, “Indium tin oxide spreading layers for AlGaInP visible LEDs,” Semicond. Sci. Technol., vol. 15, pp. 67-72, 2000.
[68] J. F. Lin, M. C. Wu, M. J. Jou, C. M. Chang, B. J. Lee, and Y. T. Tsai, “Highly reliable operation of indium tin oxide AlGaInP orange light-emitting diodes,” Electronics Letters, vol. 30, pp. 1793-1794, 1994.
[69] M. C. Wu, J. F Lin, M. J. Jou, C. M. Chang, and B. J. Lee, “High reliability of AlGaInP LED’s with efficient transparent contacts for spatially uniform light emission,” IEEE Electron Device Lett., vol.16, pp. 482-484, 1995.
[70] G. B. Stringfellow, M. George Craford, “High Brightness Light Emitting Diodes,” Semiconductors and Semimetals (Academic Press, San Diego), vol. 48, chapter 5, pp. 170-187, 1997.
[71] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett., vol. 74, pp. 3930-3932, 1999.
[72] S. M. Sze, “Physics of Semiconductor Devices,” 2nd edition, pp. 750-751, 1983.
[73] G. H. B. Thompson, “Physics of Semiconductor Laser Devices.” Wiley, New York pp. 307-310, 1980.
[74] O. Pursiainen, N. Linder, A. Jaeger, R. Oberschmid, and K. Streubel, “Identification of aging mechanisms in the optical and electrical characteristics of light-emitting diodes,” Appl. Phys. Lett., vol.79, pp. 2895-2897, 2001.
[75] K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 321-332, 2002.
[76] M. Fukuda, “Optical semiconductor devices,” chapter 7, John Wiley & Sons, Inc., 1999.
[77] M. Fukuda, “Reliability and degradation of semiconductor laser and LEDs,” chapter 6, Artech House, Boston London, 1991.
[78] M. Fukuda, O. Fujita, and S. Uehara, J. Lightwave Technol., vol. LT-6, p. 1808, 1988.
[79] K. C. Hwang and S. S. Li, “A study of new surface passivation using P2S5/(NH4)2S on GaAs Schottky barrier diodes,” J. Appl. Phys., vol. 67, pp. 2162-2165, 1990.
[80] M. S. Carpenter, M. R. Melloch, M. S. Lundstrom, and S. P. Tobin, “Effects of Na2S and (NH4)2S edge passivation treatments on the dark current-voltage characteristics of GaAs pn diodes,” Appl. Phys. Lett., vol. 52, pp. 2157-2159, 1988.
[81] C. J. Sandroff, R. N. Nottenburg, J. -C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett., vol. 51, pp. 33-35, 1987.
[82] B. Rotelli, L. Tarricone, E. Gombia, R. Mosca, and M. Perotin, “Photoelectric properties of GaSb Scottky diodes,” J. Appl. Phys., vol. 4, pp. 1813-1819, 1997.
[83] V. N. Bessolov, M. V. Lebedev, Yu. M. Shernyakov, and B. V. Tsarenkov, “Sulfur passivation of InGaAs/AlGaAs SQW laser (977 nm) facets in alcohol-based solutions,” Mater. Sci. Eng., B vol. 44, pp. 380-382, 1997.
[84] S. M. Sze, “Physics of Semiconductor Devices,” 2nd Ed., pp. 84-92, Wiley, New York, 1985.
[85] C. H. Kuan, R. M. Lin, S. F. Tang, and T. P. Sun, “Analysis of the dark current in the bulk of InAs diode detectors,” J. Appl. Phys., vol. 80, pp. 5454-5458, 1996.
[86] S. M. Sze, “Physics of Semiconductor Devices,” 2nd edition, pp. 693-694, 1983.
[87] K. Kurihara, Y. Miyamoto, and K. Furuya, “Observation of InP surfaces after (NH4)2Sx treatment by a scanning tunneling microscope,” Jpn. J. Appl. Phys. Part 2, vol. 32, no. 3B, pp. L444-L446, 1993.
[88] C. S. Sundararaman, S. Poulin, J. F. Currie, and R. Leonelli, “The sulfur-passivated InP surface,” Can. J. Phys., vol. 69, pp. 329-332, 1991.
[89] L. Jedral, H. E. Ruda, R. Sodei, H. Ma, and L. Mannik, “Electronic passivation of GaP surfaces using (NH4)2S treatment,” Can. J. Phys., vol. 70, pp. 1050-1056, 1992.
[90] S. Nakamura and G. Fasol, “The blue laser diode,” Springer, Berlin, 1997.
[91] S. Strite and H. Morkoc, “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol. B, vol. 10, p. 1237, 1992.
[92] H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, “Modeling of a GaN-based light-emitting diode for uniform current spreading,” Appl. Phys. Lett., vol. 77, pp. 1903-1904, 2000.
[93] H. Kim, S. J. Park, and H. Hwang, “Effects of current spreading on the performance of GaN-Based light-emitting diodes,” IEEE Trans. Electron Devices, vol. 48, pp. 1065-1069, June 2001.
[94] H. Kim, S. J. Park, N. M. Park, and H. Hwang, “Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs,” Appl. Phys. Lett., vol. 81, pp. 1326-1328, 12 August 2002.
[95] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” J. Appl. Phys., vol. 92, pp. 2248-2250, 2002.
[96] Shuji Nakamura, Stephen Pearton, and Gerhard Fasol, “The blue laser diode—the complete story,” chap. 8, p. 192, 2000.
[97] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys., vol. 41 pp. L 1431–L 1433, 2002.
[98] T. Mukai, K. Takekawa and S. Nakamura, “InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates,” Jpn. J. Appl. Phys., vol. 37, pp. L 839–L 841, 1998.
[99] 第八屆全國LED產業研討與學術會議論文集, 地點:山東青島, p. 78, September 2002.
[100] P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices,” Appl. Phys. Lett., vol. 74, no. 24, 14 June 1999.
[101] K. Kumakura and N. Kobayashi, “Increased electrical activity of Mg-acceptors in AlxGa1-xN/GaN superlattices,” Jpn. J. Appl. Phys., vol. 38, pp. L 1012–L 1014, 1999.
[102] K. Kumakura, T. Makimoto and N. Kobayashi, “Enhanced hole generation in Mg-doped AlGaN/GaN superlattices due to piezoelectric field,” Jpn. J. Appl. Phys. vol. 39, pp. 2428–2430 Part 1, no. 4B, April 2000.
[103] K. Kumakura, T. Makimoto and N. Kobayashi, “Efficient hole generation above 1019 cm-3 in Mg-doped InGaN/GaN superlattices at room temperature,” Jpn. J. Appl. Phys. vol. 39, pp. L 195–L 196, Part 2, no. 3A/B, 15 March 2000.
[104] I. D. Goepfert, E. F. Schubert, A. Osinsky and P. E. Norris, “Demonstration of efficient p-type doping in AlxGa1-xN/GaN superlattice structures,” Electron. Lett., vol. 35, no. 13, pp. 1109-1111, 1999.
[105] I. D. Goepfert, E. F. Schubert, A. Osinsky, P. E. Norris, and N. N. Faleev, “Experimental and theoretical study of acceptor activation and transport properties in p-type AlxGa1-xN/GaN superlattices,” J. Appl. Phys., vol. 88, no. 4, 15 August 2000.
[106] I. Zhoz, A. T. Ping, F. Khan, A. Osinsky, and I. Adesida, “Ti//Pt/Au ohmic contacts on p-type GaN/AlxGa1-xN,” Electron. Lett., vol. 36, no. 1, pp. 91-93, 2000.
[107] J. K. Sheu, G. C. Chi, and M. J. Jou, “Low-operation voltage of InGaN/GaN light-emitting diodes by using a Mg-doped Al0.15Ga0.85N/GaN superlattice,” Electron. Lett., vol. 22, no. 4, pp. 160-162, April 2001.
[108] P. Kozodoy, S. Keller, S. P. DenBaars, and U.K. Mishra, “MOVPE growth and characterization of Mg-doped GaN,” J. Crystal Growth, vol. 195, pp. 265-269, 1998.
[109] T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, and I. Akasaki, S. Yamazaki and M. Koike, “P-type conduction in Mg-doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 65, pp. 593-594, 1994.
[110] H. Nakayama, P. Hacke, M. Rezaul, H. Khan, T. Detchprohm, K. Hiramatsu and N. Sawaki, “Electrical transport properties of p-GaN,” Jpn. J. Appl. Phys., vol. 35, pp. L282-L284, 1996.
[111] C. Y. Chiou, C. C. Wang, Y. C. Ling, and C. I. Chiang, “Secondary ion mass spectrometry analysis of In-doped p-type GaN films,” Applied Surface Science, vol. 203, pp. 482-485, Jan 15 2003.
[112] K. Kumakura, T. Makimoto, and N. Kobayashi, “Activation energy and electrical activity of Mg in Mg-doped InxGa1-xN (x < 0.2),” Jpn. J. Appl. Phys., vol. 39, pp. L 337–L 339, Part 2, no. 4B, 15 April 2000.
[113] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, pp. 3222-3233, 15 March 1999.
[114] P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett., vol. 75, no. 16, pp. 2444-2446, 18 October 1999.
[115] E. F. Schubert, W. Grieshaber, and I. D. Goepfert, “Enhancement of deep acceptor activation in semiconductors by superlattice doping,” Appl. Phys. Lett., vol. 69, 9 December 1996.
[116] Ch. Manz, M. Kunzer, H. Obloh, A. Ramakrishnan, and U. Kaufmann, “InxGa1-xN/GaN band offsets as inferred from the deep, yellow-red emission band in InxGa1-xN,” Appl. Phys. Lett., vol. 74, no. 26, pp. 3993-3995, 28 June 1999.
[117] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 310-320, 2002.
[118] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu, and S. C. Chen, “Improved ESD Protection by combining InGaN–GaN MQW LEDs with GaN schottky diodes,” IEEE Electron Device Lett., vol. 24, pp. 129-131, 2003.
[119] G. Meneghesso, S. Podda, M. Vanzi, “Investigation on ESD-stressed GaN/InGaN-on-sapphire blue LEDs,” Microelectronics Reliability, vol. 41, pp. 1609-1614, 2001.
[120] G. Meneghesso, A. Chini, A. Maschietto, E. Zanoni, P. Malbeti, M. Ciappa, “Electrostatic discharge and electrical overstress on GaN/InGaN light emitting diodes,” EOS/ESD Symposium 2001, Oregon Convention Center, Portland, Oregon USA, September 9-13, 2001.
[121] Y. Twu, L. S. Cheng, S. N. G. Chu, F. R. Nash, K. W. Wang, and P. Parayanthal, “Semiconductor laser damage due to human-body-model electrostatic discharge,” J. Appl. Phys., vol. 74, no. 3, pp. 1510-1520, 1 August 1993.
[122] S. Nakamura, S. Pearton, and G. Fasol, “The blue laser diode—the complete story,” chap. 3, p. 42, 2000.
[123] A. Zukauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid-state lighting source with four or more LEDs,” Proc. SPIE 4425, pp. 148-155, 2001.
[124] A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett., vol. 80, pp. 234-236, 2002.
[125] Y. Luo, S. P. Guo, O. Maksimov, M. C. Tamargo, V. Asnin, F. H. Pollak, and Y. C. Chen, “Patterned three-color ZnCdSe/ZnCdMgSe quantum-well structures for integrated full-color and white light emitters,” Appl. Phys. Lett., vol. 77, pp. 4259-4261, 2000.
[126] A. Zukauskas, M. S. Shur, R. Caska, “Introduction to solid-state lighting,” John Wiley & Sons, Inc., New York, 2002.
[127] Z. Y. Xie, J. Feng, J. S. Huang, S. Y. Liu, Y. Wang, and J. C. Shen, “Tuning of chromaticity in organic multiple-quantum well white light emitting devices,” Synthetic Metals, vol. 108, pp. 81–84, 2000.
[128] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A, vol. 64, pp. 417-418, 1997.
[129] H. Frob, M. Kurpiers, and K. Leo, “Extremely high quantum efficiencies from organic dyes in inorganic matrix layers,” pp. 210-211, CLEO’98.
[130] C. Zhang and A. J. Heeger, “Gallium nitride/conjugated polymer hybrid light emitting diodes: performance and lifetime,” J. Appl. Phys., vol. 84, no. 3, 1998.
[131] F. Hide, P. Kozodoy, and A. J. Heeger, “White light from InGaN/conjugated polymer hybrid light-emitting diodes,” Appl. Phys. Lett., vol. 70, no. 20, 19 May 1997.
[132] P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Materials Science and Engineering B, vol. 59, pp. 390–394, 1999.
[133] M. M. Regina, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Select. Topics Quantum Electron., vol. 8, no. 2, pp. 339-345, 2002.
[134] X. Guo, J. W. Graff, and E. F. Schubert, “Photon-recycling for high brightness LEDs,” Compound Semiconductor, vol. 6, pp. 1-4, 2000.
[135] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron., vol. 8, no. 2, pp. 310-320, MARCH/APRIL 2002.
[136] H. W. Leverenz, “Optimum efficiency conditions for white luminescent screens in kinescopes,” J. Opt. Soc. Am., vol. 30, pp. 309-315, 1940.
[137] LumiLeds Lighting Website, http://www.lumileds.com/technology/technology_index.html.
[138] X. Guo, J. W. Graff and E. F. Schubert, “Photon recycling semiconductor light emitting diode,” IEDM Technical Digest, IEDM-99, pp. 600-603, 1999.
[139] F. D.Sala, A. D. Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz and J. Jancu, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett., vol. 74, pp. 2002-2004, 1999.
[140] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,” Appl. Phys. Lett., vol. 73, pp. 1691–3, 1998.
[141] Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, Y. Narukawa, T. Mukai and S. Fujita, “In inhomogeneity and emission characteristics of InGaN,” J. Phys.: Condens. Matter, vol. 13, pp. 6993–7010, 2001.
[142] S. Chichibu, T. Azuhata, T. Sota and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett., vol. 69, pp. 4188–4190, 1996.
[143] Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett., vol. 70, pp. 981–983, 1997.
[144] R. H. Horng, C. E. Lee, S. H. Huang and D. S. Wuu, “High-power AlGaInP light-emitting diodes with patterned copper substrates by electroplating,” Jpn. J. Appl. Phys., vol. 43, pp. L 576–L 578, 2004.