研究生: |
陳慧真 Chen, Hui-Zhen |
---|---|
論文名稱: |
伊班磷酸 (Ibandronate Sodium)對於腎臟細胞上鈣離子活化鉀離子通道的作用機制 Effects of Ibandronate Sodium, a Bisphosphonate, on the Activity of Calcium-Activated Potassium Channels in Madin-Darby Canine Kidney Cells |
指導教授: |
吳勝男
Wu, Sheng-Nan |
學位類別: |
碩士 Master |
系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | 伊班磷酸 、電壓依賴性鉀離子電流 、大型電導鈣離子活化鉀離子通道 、中型電導鈣離子活化鉀離子通道 、腎小管細胞 |
外文關鍵詞: | Ibandronate, voltage-gated K+ current, large-conductance Ca2+-activated K+ channels, intermediate-conductance Ca2+-activated K+ channels, renal tubular cells |
相關次數: | 點閱:106 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
伊班磷酸 (Ibandronate sodium)是屬於一種含氮雙磷酸鹽類藥物,對於治療骨質疏鬆症(osteoporosis)而言,被認為一種有效抗骨質疏鬆藥物。先前研究報告指出,伊班磷酸會影響腎臟中的腎小管功能。此化合物並不會藉由人類及動物的代謝系統而進行分解,並且會累積在腎臟中。此外,根據以前的研究發現,在大白鼠中伊班磷酸會造成腎臟中的遠曲小管、集尿管過度肥大及過度增生。然而,它是否會對腎臟細胞之細胞膜上的離子通道產生任何作用目前仍然不清楚。因此,在我們的研究當中,主要是探討這個藥物針對腎臟中的腎小管細胞- MDCK 細胞之中,其細胞膜上電流可能變化及作用機制。我們利用細胞膜箝制(patch-clamp)的技術來評估腎小管細胞的電生理特性。首先,我們利用完整細胞膜式紀錄(whole-cell recordings)的方式做觀察,加入了伊班磷酸後MDCK細胞上電壓依賴性鉀離子電流(voltage-dependent K+ currents, IK) 的振幅強度下降,而在伊班磷酸所誘導的電壓依賴性鉀離子電流抑制作用可由加入硫化氫(H2S)來逆轉。其次,以細胞連接片紀錄(cell-attached recordings)的方式觀察,從實驗中觀察到細胞暴露於伊班磷酸下所造成的大型電導鈣離子活化鉀離子通道(BKCa channels)活性抑制效果呈現濃度依賴性關係;然而,伊班磷酸並不會改變大型電導鈣離子活化鉀離子通道的電導。但這個藥物會造成這株細胞中的大型電導鈣離子活化鉀離子通道的活化曲線往較正的膜電位移動了約22毫伏特。另外,發現細胞在暴露於伊班磷酸的情況下,不僅會導致大型電導鈣離子活化鉀離子通道的通道開啟機率降低而且會縮短通道平均開啟時間的慢組成。在細胞膜伸展下給予負壓,伊班磷酸所經由的大型電導鈣離子活化鉀離子通道活性之抑制作用的振幅並不會有所差異。在伊班磷酸的存在下,這些通道的敏感性鈣離子會被改變。而且,伊班磷酸也能有效抑制中型電導鈣離子活化鉀離子通道(IKCa channels)活性,且加入DCEBIO或 9-phenanthrol (已知IKCa通道刺激劑) 後而被有效逆轉其作用。另外我們在反轉錄聚合酵素鏈鎖反應(reverse transcription-PCR)的實驗中顯示MDCK細胞中有KCNN4 mRNA的表現。最後,在電壓-膜片箝制紀錄(current-clamp recordings)中,我們發現伊班磷酸會造成MDCK細胞的膜電位產生去極化,而加入DCEBIO 或 PF573228之後伊班磷酸所誘導的去極化現象就會被逆轉回來。總結本篇的實驗研究,透過伊班磷酸對於鈣離子活化鉀離子通道的抑制作用可能有助於瞭解這類藥物之藥理學或毒理學的作用機制,並且這類結構相似的雙磷酸鹽-伊班磷酸對於在活體中腎小管細胞的活性功能會有更進一步的了解。
Ibandronate sodium (Iban) is a highly potent nitrogen-containing bisphosphonate and effective for the treatment of osteoporosis. It was previously reported to influence the function of renal tubular cells. According to previous studies, Iban is not metabolized in either human or animal and it can then accumulate in the kidney; consequently, it produces hypertrophy and hyperplasia of distal tubules and collecting ducts in the rats. However, whether this drug has any effects on membrane ion channels in kidney cells remains largely unclear. This study was conducted to investigate the possible effects of this drug on ionic currents functionally expressed in MDCK renal tubular cells. In whole-cell recordings, Iban decreased the amplitude of voltage-dependent K+ current (Ik) in MDCK cells. Iban-induced inhibition of IK was reversed by further addition of hydrogen sulfide (H2S). In cell-attached recordings, cell exposure to Iban decreased the activity of large-conductance Ca2+-activated K+ (BKCa) channels in a concentration-dependent manner; however, it suppressed BKCa channel activity with no modifications on single-channel conductance of these channels. This compound caused a shift in the activation curve to a positive membrane potential by approximately 22 mV of BKCa channels in these cells. However, during exposure to it not only decreased probability of channel openings but also shortened slow component of mean open time for BKCa channels. The magnitude of Iban-mediated inhibition of BKCa-channel activity did not differ significantly in membrane stretch with negative pressure. Moreover, Ca2+ sensitivity of these channels was modified in the presence of this compound. Iban also effectively suppressed the activity of intermediate-conductance Ca2+-activated K+ (IKCa) channels, and DCEBIO or 9-phenanthrol effectively reversed its effects. In the RT-PCR experiment, the mRNA expression of KCNN4 could be detected in these cells. Under current-clamp recordings, Iban caused membrane depolarization of MDCK cells and DCEBIO or PF573228 reversed Iban-induced depolarization. Taken together, our results clearly showed that the role of suppression by Iban on the activity of Ca2+-activated K+ channels may contribute to the understanding mechanism of pharmacological or toxicological actions of this compound and its structurally similar bisphosphonates on renal tubular cells if similar findings occur in vivo.
Albaqumi, M., Srivastava, S., Li, Z., Zhdnova, O., Wulff, H., Itani, O., Wallace, D.P., Skolnik, E.Y. 2008. "KCa3.1 potassium channels are critical for cAMP-dependent chloride secretion and cyst growth in autosomal-dominant polycystic kidney disease." Kidney Int. 74:40-749
Basok, E.K., Basaran, A., Atsu, N., Yildirim, A., Tokuc, R. 2008. "Are new-generation bisphosphonates effective for the inhibition of calcium oxalate stone formation in a rat model?" Urol Int. 81:325-329
Begenisich, T., Nakamoto, T., Ovitt, C.E., Nehrke, K., Brugnara, C., Alper, S.L., Melvin, J.E. 2004. "Physiological roles of the intermediate conductance, Ca2-activated potassium channel Kcnn4." J Biol Chem. 279:47681–47687
Bergner, R., Siegrist, B., Gretz, N., Pohlmeyer-Esch, G., Kränzlin, B. 2015. "Nephrotoxicity of ibandronate and zoledronate in Wister rats with normal renal function and after unilateral nephrectomy." Pharmacol Res. 99:16-22
Bergner, R., Siegrist, B., Kränzlin, B., Gretz, N., Faust, H., Pfister, T. 2013. "Determination of renal tissue ibandronate levels in rats with normal and mildly impaired renal function." J Pharm Toxicol Meth. 68:225-230
Bootman, M.D., Berridge, M.J., Roderick, H.L. 2002. "Calcium signalling: more messengers, more channels, more complexity." Curr Biol. 12: R563-R565
Bravo-Zehnder, M., Orio, P., Norambuena, A., Wallner, M., Meera, P., Toro, L., Latorre, R., González, A. 2000. "Apical sorting of a voltage-and Ca2+-activated K+ channel α-subunit in Madin-Darby canine kidney cells is independent of N-glycosylation." P NAS. 97:13114-13119
Chang, H. T., Chou, C. T., Liang, W. Z., Lu, T., Kuo, D. H., Shieh, P., Ho, C.M., Jan, C. R. 2014. "Effects of Thymol on Ca2+ Homeostasis and Apoptosis in MDCK Renal Tubular Cells." Chinese J Physiol. 57:90-98
Chen, C.L., Cha, T.L., Wu, S.T., Tang, S.H., Tsao, C.W., Meng, E. 2013. "Renal infarction secondary to ketamine abuse." Am J Emerg Med. 31:1153.e3-1153.e5
Chiang, N.J., Wu, S.N., Chen, L.T. 2015. "The potent activation of Ca2+-activated K+ current by NVP-AUY922 in the human pancreatic duct cell line (PANC-1) possibly independent of heat shock protein 90 inhibition." J Pharmacol Sci. 127:404-413
Clapham, D.E. 1995. "Intracellular calcium-Replenishing the stores." Nature. 375: 634-635
Dargan, P.I., Tang, H.C., Liang, W., Wood, D.M., Yew, D.T. 2014. "Three months of methoxetamine administration is associated with significant bladder and renal toxicity in mice." Clin Toxicol. 52:176-180
Diaz, P., Wood, A.M., Sibley, C.P., Greenwood, S.L. 2014. "Intermediate conductance Ca2+ -activated K+ channels modulate human placental trophoblast syncytialization." PloS One. 9:e90961
Drake, M. T., Clarke, B. L., & Khosla, S. 2008. "Bisphosphonates: mechanism of action and role in clinical practice." Mayo Clin Proc. 83:1032-1045
Ebetino, F.H., Hogan A.L., Sun, S., Tsoumpra, M.K., Duan, X., Triffitt, J.T., Kwaasi, A.A., Dunford, J.E., Oppermann, U., Lundy, M.W., Boyde, A., Kashemirov, B.A., McKenna, C.E., Russell, R.G.G. 2011. "The relationship between the chemistry and biological activity of the bisphosphonates." Bone. 49:20-33
Ebisuno, S., Kohjimoto, Y., Nishikawa, M., Inagaki, T., Komura, T., Ohkawa, T. 1998. "Effect of etidronate disodium on crystallizations in synthetic urine and calcium oxalate crystal adhesion to Madin-Darby canine kidney (MDCK) cells." Int J Urol. 5:582-587
Fallet, R.W., Bast, J.P., Fujiwara, K., Ishii, N., Sansom, S.C., Carmines, P.K. 2001. "Influence of Ca2+-activated K+ channels on rat renal arteriolar responses to depolarizing agonists." Am J Physiol Renal Physiol. 280:F583–F591
Fisher, J.E., Rosenberg, E., Santora, A.C., Reszka, A.A. 2013. "In vitro and in vivo responses to high and low doses of nitrogen-containing bisphosphonates suggest engagement of different mechanisms for inhibition of osteoclastic bone resorption." Calcif Tissue Int. 92:531-538
Gallagher, J.C., Tella, S.H. 2013. "Controversies in osteoporosis management: antiresorptive therapy for preventing bone loss: when to use one or two antiresorptive agents?" Clin Obstet Gynecol. 56:749-756
Garland, C.J., Smirnov, S.V., Bagher, P., Lim, C.S., Huang, C.Y., Mitchell, R., Stanley, C., Pinkney, A., Dora, K.A. 2015. "TRPM4 inhibitor 9-phenanthrol activates endothelial cell intermediate conductance calcium-activated potassium channels in rat isolated mesenteric artery." Br J Pharmacol. 172:1114-1123
Grgic, I., Kiss, E., Kaistha, B. P., Busch, C., Kloss, M., Sautter, J., Muller, A., Kaistha, A., Schmidt, C., Raman, G., Wulff, H., Strutz, F., Grone, H.J., Kohler, R., Hoyer, J. 2009. "Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels." PNAS. 106:14518-14523
Grynkiewicz, G., Poenie, M., Tsien, R.Y. 1985. "A new generation of Ca2+ indicators with greatly improved fluorescence properties." J Biol Chem. 260: 3440-3450
Huang, C., Pollock, C. A., &Chen, X. M. 2014. "Role of the potassium channel KCa3.1 in diabetic nephropathy." Clinical Science. 127:423-433
Huang, C., Pollock, C. A., & Chen, X. M. 2015. "KCa3.1 : a new player in progressive kidney disease." Curr opin Nephrol Hypertens. 24:61-66
Huang, C., Shen, S., Ma, Q., Chen, J., Gill, A., Pollock, C. A., & Chen, X. M. 2013. "Blockade of KCa3.1 ameliorates renal fibrosis through the TGF-1/Smad pathway in diabetic mice." Diabetic. 62:2923-2934
Huang, M.H., Lin, K.H., Chen, S.J., Shen, A.Y., Wu, F.T., Wu, S.N. 2012. "Effects of ketamine and its metabolites on ion currents in differentiated hippocampal H19-7 neuronal cells and in HEK293T cells transfected with -hslo subunit." Neurotoxicology. 33:1058-1066
Huang, P.W., Meng, E., Char, T.L., Sun, G.H., Yu, D.S., Chang, S.Y. 2011. "‘Walking-stick ureters’ in ketamine abuse. " Kidney Int. 80:895-895
Hunter, M., Lopes, A.G., Boulpaep, E.L., Cohen, B., Giebisch, G. 1984. "Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules." Proc Natl Acad Sci USA. 81:4237–4239
Ishikawa, T., Marunaka, Y., Rotin, D. 1998. "Electrophysiological characterization of the rat epithelial Na+ channel (ENaC) expressed in MDCK cells Effects of Na+ and Ca2+." J Gen Physiol. 111:825-846
Jan, C.R., Chen, W.C., Wu, S.N., Tseng, C.J. 1998. "Nifedipine, verapamil and diltiazem block shock-wave-induced rises in cytosolic calcium MDCK cells." Chin J Physiol. 41:181-188
Jan, C.R., Wu, S.N., Tseng, C.J. 1999. "The ether lipid ET-18-OCH3 increases cytosolic Ca2+ concentrations in Madin-Darby canine kidney cells." Br J Pharmacol. 127:1502-1510
Jensen, B.S., Strøbæk, D., Olesen, S.P., Christophersen, P. 2001. "The Ca2+- activated K+ channel of intermediate conductance: a molecular target for novel treatments?" Curr Drug Targets. 2:401-422
Kino, I., Kato, Y., Lin, J.H., Sugiyama, Y. 1999. "Renal handling of biphosphonate alendronate in rats." Biopharm Drug Dispos. 20:193-198
Koning, A.M., Frenay, A.R., Leuvenink, H.G., van Goor, H. 2015. "Hydrogen sulfide in renal physiology, disease and transplantation—the smell of renal protection." Nitric Oxide. 46:37-49
Liu, W., Schreck, C., Coleman, R.A., Wade, J.B., Hernandez, Y., Zavilowitz, B., Warth, R., Kleyman, T.R., Satlin, L.M. 2011. "Role of NKCC in BK channel-mediated net K+ secretion in the CCD." Am J Physiol Renal Physiol. 301:1088-1097
Lu, R., Alioua, A., Kumar, Y., Eghbali, M., Stefani, E., Toro, L. 2006. "Maxi-K channel partners: physiological impact." J Physiol. 570:65–72
Luedders, D.W., Steinhoff, J., Thill, M., Rody, A., Bohlmann, M.K. 2015. "Lack of difference in acute nephrotoxicity of intravenous bisphosphonates zoledronic acid and ibandronate in women with breast cancer and bone metastases." Anticancer Res. 35:1797-1802
Luhe, A., Kunkele, K.P., Haiker, M., Schad, K., Zihlmann, C., Bauss, F., Suter, L., Pfister, T. 2008. "Preclinical evidence for nitrogen-containing bisphosphonate inhibition of farnesyl diphosphate (FPP) synthase in the kidney: implications for renal safety." Toxicol. In Vitro. 22:899-909
Ma, Y.G., Liu, W.C., Dong, S., Du, C., Wang, X.J., Li, J.S., Xie, X.P., Wu, L., Ma, D.C., Yu, Z.B., Xie, M.J. 2012. "Activation of BKCa channels in zoledronic acid-induced apoptosis of MDA-MB-231 breast cancer cells." PLoS One. 7:e37451
Marathe, D.D., Marathe, A., Mager, D.E. 2011. "Integrated model for denosumab and ibandronate pharmacodynamics in postmenopausal women. Biopharm." Drug Dispos. 32:471-481
Marty, A., Salkoff, L. 1981. "Ca2+-dependent K+ channels with large unitary conductance in chromaffin cell membranes." Nature. 231:497-500
McFerrin, M.B., Turner, K.L., Cuddapah, V.A., Sontheimer, H. 2012. "Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death." Am J Physiol Cell Physiol. 303:C1070-C1078
Morita, T., Hanaoka, K., Morales, M.M., Montrose-Rafizadeh, C., Guggino, W.B. 1997. "Cloning and characterization of maxi K+ channel -subunit in rabbit kidney." Am J Physiol Renal Physiol 273: F615–F624
Morton, M.J., Hutchinson, K., Mathieson, P.W., Witherden, I.R., Saleem, M.A., Hunter, M. 2004. "Human podocytes possess a stretch-sensitive, Ca2+-activated K+ channel: potential implications for the control of glomerular filtration." J Am Soc Nephrol. 15:2981–2987
Mosekilde, L., Vestergaard, P., Rejnmark, L. 2013. "The pathogenesis, treatment and prevention of osteoporosis in men." Drugs. 73:15-29
Najjar, F., Zhou, H., Morimoto, T., Bruns, J.B., Li, H.S., Liu, W., Kleyman, T.R., Satlin, L.M. 2005. "Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct." Am J Physiol Renal Physiol. 289:922-932
Nicolau, L.A., Silva, R.O., Damasceno, S.R., Carvalho, N.S., Costa, N.R., Aragão, K.S., Barbosa, A.L., Soares, P.M., Souza, M.H., Medeiros, J.V. 2013. "The hydrogen sulfide donor, Lawesson’s reagent, prevents alendronate-induced gastric damage in rats." Braz J Med Biol Res. 46:708-714
Okada, A., Ohshima, H., Itoh, Y., Yasui, T., Tozawa, K., Kohri, K. 2008. "Risk of renal stone formation induced by long-term bed rest could be decreased by premedication with bisphosphonate and increased by resistive exercise." Int J Urol. 15:630-635
Pazianas, M. 2010. "Osteonecrosis of jaw and the role of macrophages." J Natl Cancer Inst. 103:232-240
Perazella, M.A., Markowitz, G.S. 2008. "Bisphosphonate nephrotoxicity." Kidney Int. 74:1385-1393
Pfister, T., Atzpodien, E., Bauss, F. 2003. "The renal effects of minimally nephrotoxic doses of ibandronate and zoledronate following single and intermittent intravenous administration in rats." Toxicology. 191:159-167
Pfister, T., Atzpodien, E., Bohrmann, B., Bauss, F. 2005. "Acute renal effects of intravenous bisphosphonates in the rat." Basic Clin Pharmacol Toxicol. 97:374-381
Pluznick, J.L., Sansom, S.C. 2006. "BK channels in the kidney: role in K+ secretion and localization of molecular components." Am J Physiol Renal Physiol 291: F517–F529
Price, P.A., Buckley, J.R., Williamson, M.K. 2001. "The amino bisphosphonate ibandronate prevents vitamin D toxicity and inhibits vitamin D-induced calcification of arteries, cartilage, lungs and kidneys in rats." J Nutr. 131:2910-2915
Prokopenko, V., Kovalishyn, V., Shevchuk, M., Kopenrnyk, I., Metelytsia, L., Romanenko, V., Mogilevich, S., Kukhar, V. 2014. "Design and synthesis of new popent inhibitors of farnesyl pyrophosphate synthase." Curr Drug Discov Technol. 11:133-144
Rieg, T., Vallon, V., Sausbier, M., Sausbier, U., Kaissling, B., Ruth, P., Osswald, H. 2007. "The role of the BK channel in potassium homeostasis and flow-induced renal potassium excretion." Kidney Int. 72:566-573
Schreiber, M., Salkoff, L. 1997. "A novel calcium-sensing domain in the BK channel." Biophys J. 73:1355-1363
Selby, N.M., Anderson, J., Bungay, P., Chesterton, L.J., Kolhe, N.V. 2008. "Obstructive nephropathy and kidney injury associated with ketamine abuse." NDT Plus. 5:310-312.
Senzaki, H., Yasui, T., Okada, A., Ito, Y., Tozawa, K., Kohri, K. 2004. "Alendronate inhibits urinary calcium microlith formation in a three-dimensional culture model." Urol Res. 32:223-228
Shen, A.Y., Tsai, J.H., Teng, H.C., Huang, M.H., Wu, S.N. 2007. "Inhibition of intermediate conductance Ca2+-activated K+ channel and cytoprotective properties of 4-piperidinomethyl-2-isopropyl-5-methylphenol." J Pharm Pharmacol. 59:679-685
Sheu, S.J., Wu, S.N., Hu, D.N. 2005. "Stretch-stimulated activity of large conductance calcium activated potassium channels in human retinal pigment epithelial cells." J Ocul Pharmacol Ther. 21:429-435
So, E.C., Wu, K.C., Liang, C.H., Chen, J.Y., Wu, S.N. 2011. "Evidence for activation of BKCa channels by a known inhibitor of focal adhesion kinase, PF573228." Life Sci. 89:691-701
Stefani, E., Cereijido, M. 1983. "Electrical properties of cultured epithelioid cells (MDCK)." J Membr Biol. 73:177-184
Verhulst, A., Sun, S., McKenna, C.E., D’Haese, P.C. 2015. "Endocytotic uptake of zoledronic acid by tubular cells may explain its renal effects in cancer patients receiving high doses of the compound." PLoS One. 10:e0121861
Wai, M.S., Chan, W.M., Zhang, A.Q., Wu, Y., Yew, D.T. 2012. "Long-term ketamine and ketamine plus alcohol treatments produced damages in liver and kidney." Hum Exp Toxicol. 31:877-886
Weiss, H., Lang, F. 1992. "Ion channels activated by swelling of Madin Darby canine kidney (MDCK) cells." J Membr Biol. 126:109-114
Weling, P.A. 2013. "Regulation of renal potassium secretion: molecular mechanisms." Semin Nephrol. 33:215-228
Wen, D., Cornelius, R.J., Sansom, S.C. 2014. "Interacting influence of diuretics and diet on BK channel-regulated K homeostasis." Curr Opin Pharmacol. 15:28-32
Wu, S.N. 2003. "Large-conductance Ca2+-activated K+ channels: physiological role and pharmacology." Curr Med Chem. 10:649-661
Wu, S.N., Chen, B.S., Hsu, C.L., Hsu, T.I. 2008. "The large-conductance Ca2+-activated K+ channels: a target for the modulators of estrogen receptors." Curr Top Biochem Res. 10:93-101
Wu, S.N., Huang, Y.M., Liao, Y.K. 2015. "Effects of ibandronate sodium, a nitrogen-containing bisphosphonate, on intermediate-conductance calcium-activated potassium channels in osteoclast precursor cells (RAW 264.7)." J Membr Biol. 248: 103-115
Wu, S.N., Lin, P.H., Hsieh, K.S., Liu, Y.C., Chiang, H.T. 2003. "Behavior of nonselective cation channels and large-conductance Ca2+-activated K+ channels induced by dynamic changes in membrane stretch in cultured smooth muscle cells of human coronary artery." J Cardiovasc Electrophysiol. 14:44-51
Wu, S.N., Adonis, Z., Wu, Ruey, J.S. 2007. "Identification of two types of ATP-sensitive K+ channels in rat ventricular myocytes." Life sciences. 80:378-387
Wulff, H., Kolski-Andreaco, A., Sankaranarayanan, A., Sabatier, J.M., Shakkottai, V. 2007. "Modulators of small- and intermediate conductance calcium-activated potassium channels and their therapeutic indications." Curr Med Chem. 14:1437–1457
Wulff, H., Miller, M.J., Ha¨nsel, W., Grissmer, S., Cahalan, M.D., Chandy, K.G. 2000. "Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant." Proc Natl Acad Sci. 97:8151–8156
Yang, D.M., Chi, C.W., Chang, H.M., Wu, L.H., Lee, T.K., Lin, J.D., Chen, S.T., Lee, C.H. 2004. "Effects of clodronate on cancer growth and Ca2+ signaling of human thyroid carcinoma cell lines." Anticancer Res. 24:1617-1623