| 研究生: |
林家緯 Lin, Jia-Wei |
|---|---|
| 論文名稱: |
三芽硫磷配位基之鐵錯化合物的探討 Studies of Iron Complexes with Tridentate Bis(thiolato)phosphine Ligands |
| 指導教授: |
許鏵芬
Hsu, Hua-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 鐵 、硫醇鹽 、硫自由基 、反應性 |
| 外文關鍵詞: | iron, thiolate, thiyl radical, reactivity |
| 相關次數: | 點閱:112 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵硫化合物的反應是一個熱門的研究議題,主要是因為它和生物系統的化學有很大的相關性。例如細胞色素P450 (Cytochrome P450, CYPs)和半胱氨酸雙加氧酶 (Cysteine dioxygenase, CDO),為了瞭解鐵硫化合物的化學反應性,在此研究主題,我們使用硫磷配基及其衍生物來探討鐵硫化學。特別在這個論文研究中,我們合成並鑑定三個化合物,他們分別為[FeIII(PS2”)2]- (1), [FeIII(PS2’)2]- (2) and [Fe(PS2”)2] (3) (如下圖所示). 將這三個化合物透過各種光譜鑑定得出以下結論,化合物3的電子結構應是含有硫自由基的鐵三價化合物。化合物1和3的氧化還原性質也進一部的研究與探討。此外,化合物1和2在空氣下穩定,另一方面,化合物3可以和氧氣反應產生在配基上氧化的產物,例如:磷氧化合物或是硫氧化物。這個反應可以經由電噴灑游離質譜儀觀測。
Iron thiolate chemistry has been an interesting research area due to its relevance in biological systems, such as cytochrome P450 (CYPs) and cysteine dioxygenase (CDO). To understand the fundamental iron thiolate chemistry, our lab has utilized (thiolato)phosphine ligand derivatives to explore iron chemistry. At this wok, we report three iron complexes binding with two bis(benzenethiolate)phosphine derivatives, PS2” and PS2 (PS2” = [P(C6H5)(C6H3-3-Me3Si-2-S)2]2- and PS2’ = [P(C6H5)(C6H3-4-Me-2-S)2]2-) Three complexes, [FeIII(PS2”)2]- (1), [FeIII(PS2’)2]- (2) and [Fe(PS2”)2] (3) are well characterized and studied by X-ray crystallography, elemental analysis, various spectroscopies and physical methods. Based on various spectroscopic and magnetic data, complex 3 likely has an electronic structure of [FeIII(PS2”)(PS2”•)] where PS2”• is PS2” ligand with a thiyl radical character. The redox chemistry of these complexes are further investigated. In addition, complexes 1 and 2 are air-stable, in contrast, complex 3 reacts with dioxygen to generate ligand-based oxygenation products such as phosphine-oxide, or sulfinate containing complexes. The reactions are monitored by ESI-MS combined with isotope studies.
Reference
1. Aluri, S.; de Visser, S. P., The mechanism of cysteine oxygenation by cysteine dioxygenase enzymes. Journal of the American Chemical Society 2007, 129 (48), 14846-+.
2. Chang, Y. H.; Su, C. L.; Wu, R. R.; Liao, J. H.; Liu, Y. H.; Hsu, H. F., An Eight-Coordinate Vanadium Thiolate Complex with Charge Delocalization between V(V)-Thiolate and V(IV)-Thiyl Radical Forms. Journal of the American Chemical Society 2011, 133 (15), 5708-5711.
3. Chauhan, R.; Mashuta, M. S.; Grapperhaus, C. A., Reinvestigation of the first structurally characterized metal-coordinated sulfenic acid complex. Inorganic Chemistry Communications 2013, 37, 186-188.
4. Cook, S. A.; Borovik, A. S., Molecular Designs for Controlling the Local Environments around Metal Ions. Accounts of Chemical Research 2015, 48 (8), 2407-2414.
5. Faponle, A. S.; Seebeck, F. P.; de Visser, S. P., Sulfoxide Synthase versus Cysteine Dioxygenase Reactivity in a Nonheme Iron Enzyme. Journal of the American Chemical Society 2017, 139 (27), 9259-9270.
6. Fiedler, A. T.; Fischer, A. A., Oxygen activation by mononuclear Mn, Co, and Ni centers in biology and synthetic complexes. Journal of Biological Inorganic Chemistry 2017, 22 (2-3), 407-424.
7. Fischer, A. A.; Lindeman, S. V.; Fiedler, A. T., Spectroscopic and computational studies of reversible O-2 binding by a cobalt complex of relevance to cysteine dioxygenase. Dalton Transactions 2017, 46 (39), 13229-13241.
8. Fischer, A. A.; Lindeman, S. V.; Fiedler, A. T., A synthetic model of the nonheme iron-superoxo intermediate of cysteine dioxygenase. Chemical Communications 2018, 54 (80), 11344-11347.
9. Gordon, J. B.; Vilbert, A. C.; DiMucci, I. M.; MacMillan, S. N.; Lancaster, K. M.; Moenne-Loccoz, P.; Goldberg, D. P., Activation of Dioxygen by a Mononuclear Nonheme Iron Complex: Sequential Peroxo, Oxo, and Hydroxo Intermediates. Journal of the American Chemical Society 2019, 141 (44), 17533-17547.
10. Grapperhaus, C. A.; Kozlowski, P. M.; Kumar, D.; Frye, H. N.; Venna, K. B.; Poturovic, S., Singlet diradical character of an oxidized ruthenium trithiolate: electronic structure and reactivity. Angewandte Chemie-International Edition 2007, 46 (22), 4085-4088.
11. Grapperhaus, C. A.; Ouch, K.; Mashuta, M. S., Redox-Regulated Ethylene Binding to a Rhenium-Thiolate Complex. Journal of the American Chemical Society 2009, 131 (1), 64-+.
12. Dutta, A.; Flores, M.; Roy, S.; Schmitt, J. C.; Hamilton, G. A.; Hartnett, H. E.; Shearer, J. M.; Jones, A. K., Sequential Oxidations of Thiolates and the Cobalt Metallocenter in a Synthetic Metallopeptide: Implications for the Biosynthesis of Nitrile Hydratase. Inorganic Chemistry 2013, 52 (9), 5236-5245.
13. Eisenberg, R., Trigonal prismatic coordination in tris(dithiolene) complexes: Guilty or just non-innocent? Coordination Chemistry Reviews 2011, 255 (7-8), 825-836.
14. Eisenberg, R.; Gray, H. B., Noninnocence in Metal Complexes: A Dithiolene Dawn. Inorganic Chemistry 2011, 50 (20), 9741-9751.
15. Grapperhaus, C. A.; Poturovic, S., Electrochemical investigations of the tris(2-(diphenylphosphino)thiaphenolato)ruthenate(II) monoanion reveal metal- and ligand-centered events: Radical, reactivity, and rate. Inorganic Chemistry 2004, 43 (10), 3292-3298.
16. Grapperhaus, C. A.; Poturovic, S.; Mashuta, M. S., Dichloromethane alkylates a trithiolato-ruthenium complex to yield a methylene-bridged thioether core. Synthesis and structural comparison to the thiolato-ruthenium precursor. Inorganic Chemistry 2002, 41 (17), 4309-4311.
17. Lee, C. M.; Hsieh, C. H.; Dutta, A.; Lee, G. H.; Liaw, W. F., Oxygen binding to sulfur in nitrosylated iron-thiolate complexes: Relevance to the Fe-containing nitrile hydratases. Journal of the American Chemical Society 2003, 125 (38), 11492-11493.
18. Lu, M.; Campbell, J. L.; Chauhan, R.; Grapperhaus, C. A.; Chen, H., Probing the Reactivity and Radical Nature of Oxidized Transition Metal-Thiolate Complexes by Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2013, 24 (4), 502-512.
19. Lu, X. Y.; Li, X. X.; Lee, Y. M.; Jang, Y. R.; Seo, M. S.; Hong, S.; Cho, K. B.; Fukuzumi, S.; Nam, W., Electron-Transfer and Redox Reactivity of High-Valent Iron Imido and Oxo Complexes with the Formal Oxidation States of Five and Six. Journal of the American Chemical Society 2020, 142 (8), 3891-3904.
20. Mardyukov, A.; Schreiner, P. R., Generation and characterization of the phenylthiyl radical and its oxidation to the phenylthiylperoxy and phenylsulfonyl radicals. Physical Chemistry Chemical Physics 2016, 18 (37), 26161-26165.
21. Markovic, D.; Varela-Alvarez, A.; Sordo, J. A.; Vogel, P., Mechanism of the diphenyldisulfone-catalyzed isomerization of alkenes. Origin of the chemoselectivity: Experimental and quantum chemistry studies. Journal of the American Chemical Society 2006, 128 (24), 7782-7795.
22. McQuilken, A. C.; Jiang, Y. B.; Siegler, M. A.; Goldberg, D. P., Addition of Dioxygen to an N4S(thiolate) Iron(II) Cysteine Dioxygenase Model Gives a Structurally Characterized Sulfinato-Iron(II) Complex. Journal of the American Chemical Society 2012, 134 (21), 8758-8761.
23. Ouch, K.; Mashuta, M. S.; Grapperhaus, C. A., Metal-Stabilized Thiyl Radicals as Scaffolds for Reversible Alkene Addition via C-S Bond Formation/Cleavage. Inorganic Chemistry 2011, 50 (20), 9904-9914.
24. Ouch, K.; Mashuta, M. S.; Grapperhaus, C. A., Alkyne Addition to a Metal-Stabilized Thiyl Radical: Carbon-Sulfur Bond Formation between 1-Octyne and Ru(SP)(3) (+). European Journal of Inorganic Chemistry 2012, (3), 475-478.
25. Yan, J. A.; Chen, Y. S.; Chang, Y. H.; Tsai, C. Y.; Lyu, C. L., Luo, C. G., Lee, G. H., Hsu, H. F., Redox Interconversion of Non-Oxido Vanadium Complexes Accompanied by Acid-Base Chemistry of Thiol and Thiolate . Inorg. Chem. 2017, 56, 9055-9063.
26. Yan, J. A.; Yang, Z. K.; Chen, Y. S.; Chang, Y. H.; Lyu, C. L.; Luo, C. G.; Cheng, M. J.; Hsu, H. F., Activation of O-H and C-O Bonds in Water and Methanol by a Vanadium-Bound Thiyl Radical. Chemistry-a European Journal 2018, 24 (57), 15190-15194.