簡易檢索 / 詳目顯示

研究生: 郭鈞華
Kuo, Chun-Hua
論文名稱: 具直角轉彎、s型轉彎及分合流道的微型混合器
Micromixers with 90-degree bends, s-shaped bends and split-and-recombine arrangement
指導教授: 吳志陽
Wu, C.Y.
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 116
中文關鍵詞: 微型混合器S型轉彎直角轉彎分合流道
外文關鍵詞: Micromixer, 90-degree bends, s-shaped bends, split-and-recombine arrangement
相關次數: 點閱:54下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計四種矩形瑞士捲混合器並加以探討,另外,觀察T型混合器、方波型與Z字型混合器的流體混合情形,以了解直角轉彎之配置的影響。在本研究中,使用數值軟體CFD-ACE+(CFD Research Corporation)模擬在微混合器中的三維流動與擴散情形。在設計這些微混合器時,考慮了幾個參數,包含流量、轉彎數、流道寬度和分合流的設置,而選擇所考慮的參數的依據為模擬的結果與流體力學的理論。製造微混合器的過程包含:利用光微影製程來製作母膜、使用PDMS翻膜和將翻膜出來的流道與載玻片做接合。實驗使用共軛焦顯微鏡以取得螢光溶液的流動及濃度分佈的影像,並與模擬的結果作比較。本文的結果顯示:(1)直角轉彎若是越多,混合效率通常也較好。(2)加上分合流不一定可以讓混合更好,而是要配合在分流前受到足夠的相同方向離心力所產生的渦流對作用才行。(3)在較低雷諾數下,Z字型、方波型與瑞士捲混合器在混合上,並沒有太大的差別,但是在較高雷諾數時,在產生相同壓降的情況下,瑞士捲混合器較方波型與Z字型混合器能有較好的混合效率。

    In this work, we design and investigate four kinds of swissroll micromixers. Besides, to investigate the effects of arrangement of 90-degree bendings, we also examine the liquid mixing in the T-shape micromixer, the squarewave micromixer and the zigzag micromixer. This work uses the software, CFD-ACE+ (CFD Research Corporation), to simulate the three-dimensional flow and diffusion in the micromixers. When designing the micromixers, we consider several parameters, including the flow rates, the number of the bends, the widths of the channels and the split-and-recombine arrangement. We choose the parameters on the basis of the simulation results and the theory of microfluidics. The fabrication process of the micromixers in this work includes applying the photolithography method to fabricate SU-8 mold, replicating the mold by PDMS (polydimethysiloxane), and bonding the former with a sheet of cover glass. Then, the concentration distribution in the flow is obtained by confocal microscopy of aqueous fluorescent streams. The photographs of mixing between two fluids are compared with the results obtained by simulations. The above results show that (i) There is a better mixing quality, if more 90-degree bends were added in a micromixer. (ii) Adding split-and-recombine arrangement does not always generate a better mixing quality, but does enhance mixing for the situations where the vortex pairs induced by centrifugal force in same direction are strong enough before splitting. (iii) For the case with a larger Reynolds number and the same pressure drop, the swissroll micromixer generates a better mixing quality than the squarewave micromixer and the zigzag micromixer do. For the case with a smaller Reynolds number, the mixing in these three micromixers does not show significant difference.

    中文摘要..................................................i 英文摘要.................................................ii 目錄......................................................v 圖目錄.................................................viii 符號說明................................................xvi 第一章 緒論...............................................1 1-1 研究背景..............................................1 1-2 文獻回顧..............................................1 1-3 研究動機..............................................3 1-4 本文架構..............................................4 第二章 理論與數值模擬.....................................5 2-1 基本假設..............................................5 2-2 統御方程式............................................6 2-3 邊界條件..............................................7 2-4 無因次分析............................................9 2-4-1方程式的無因次化.....................................9 2-4-2邊界條件的無因次化..................................10 2-5 數值模擬.............................................11 2-5-1 CFD-GEOM幾何形狀與網格建立.........................11 2-5-2 CFD-ACE+模擬計算求解...............................12 2-5-3 CFD-VIEW後處理.....................................12 2-6 混合指標.............................................13 2-7 微混合器的幾何尺寸...................................13 2-7-1 雙重單迴圈不具分合流瑞士捲混合器...................14 2-7-2 雙迴圈不具分合流瑞士捲混合器.......................14 2-7-3 雙重單迴圈具分合流瑞士捲混合器.....................14 2-7-4 雙迴圈具分合流瑞士捲混合器.........................15 2-7-5 T型混合器.........................................15 2-7-6 Z字型混合器.......................................15 2-7-7 方波型混合器.......................................16 第三章 微型混合器的製作與觀測............................17 3-1 實驗流程.............................................17 3-1-1 光罩製作...........................................17 3-1-2 母模製作...........................................17 3-1-3 翻模製作微混合器...................................20 3-1-4 PDMS成品接合與管線接合............................21 3-2 實驗流程.............................................21 3-2-1 工作流體與微量式注射幫浦...........................21 3-2-2 微混合器實驗前置作業...............................21 3-2-3 影像擷取...........................................22 第四章 結果與討論........................................23 4.1 簡介.................................................23 4.2 T型混合器和不同瑞士捲混合器之間的混合指數與壓降比較.24 4.3 具分合流雙重單迴圈與雙迴圈兩種瑞士捲混合器...........26 4.4 分合流道的影響.......................................33 4.5 Z字型、方波形與瑞士捲混合器的比較...................37 第五章 結論與展望........................................42 5.1 結論.................................................42 5.2 展望…….............................................42 參考文獻.................................................44

    1. A. Manazs, N. Graber and H. M. Widmer, “Miniaturized total analysis systems: a novel concept for chemical sensing,” Sensors and Actuators B: Chemical, Vol. 1, pp.
    244-248, 1990.
    2. V. Vivek, Y. Zeng and E. S. Kim, “Novel acoustic-wave micromixer,” The Annual International Conference on Micro Electro Mechanical Systems, MENS 2000, pp. 668-673, 2000.
    3. Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto and R. Maeda, “Ultrasonic micromixer for microfluidic systems,” Sensors and Actuators A, Vol. 93, pp. 266-272, 2001.
    4. J. H. Tsai and L. Lin, ”Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump, “Sensors and Actuators A, Vol. 97-98, pp. 665-671, 2002.
    5. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, “Chaotic mixer for microchannels,” Science, Vol. 295, pp. 647-651, 2002.
    6. N. Kockmann, M. Engler, D. Haller, and P. Woias, “Fluid dynamics and transfer processes in bended microchannels,” Heat Transfer Engineering, Vol. 26, pp.
    71-78, 2005.
    7. F. Schönfeld and S. Hardt, “Simulation of helical flows in microchannels,” AIChE Journal, Vol.50, pp. 771-778, 2004.
    8. A. P. Sudarsan and V. M. Ugaz, “Multivortex micromixing,” PNAS, Vol. 103, pp. 7228-7233, 2006.
    9. Y. Yamaguchi, F. Takagi, T. Watari, K. Yamashita, H. Nakamura, H. Shimizu and M. Hideaki, “ Interface configuration of the two layered laminar flow in a curved
    microchannel,” Chemical Engineering Journal, Vol. 101, pp. 367-372, 2004.
    10. N. Kockmann, C. Föll and P. Woias, “ Flow regimes and mass transfer characteristics in static micro mixers, ” Proceeding of SPIE, Vol. 4982, pp. 319-329, 2003.
    11. L. H. Lu, K. S. Ryu and C. Liu, “ A magnetic microstirrer and array for microfluidic mixing,” Journal of Microelectromechanical Systems, Vol. 11, pp. 462-469, 2002.
    12. S. A. Rani,B. Pitts and P. S. Stewart, “ Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse
    microscopy,” Antimicrobial Agents and Chemotherapy, Vol. 49, pp.728-732, 2005.
    13. 黃冠傑, “以方形瑞士捲流道促進微流體混合之研究,” 國立成功大學機械工程研究所碩士論文, 2007.

    下載圖示 校內:2009-08-21公開
    校外:2009-08-21公開
    QR CODE