| 研究生: |
周孟俞 Chou, Meng-Yu |
|---|---|
| 論文名稱: |
製備含有奈米碳管膜之矽晶太陽能電池研究 Fabrication and Study of Carbon Nanotubes Film on Crystalline Silicon Solar Cell |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 矽晶太陽能電池 、奈米碳管 |
| 外文關鍵詞: | Crystalline Silicon Solar Cell, Carbon Nanotubes |
| 相關次數: | 點閱:83 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從奈米碳管的發現以來,不少的研究團隊就持續在這個領域中研究,無論在電學、熱傳導、機械等方面都有很優越的特性。本研究中利用酒精催化化學氣相沉積的方式,在射極層(n-type)表面成長大面積且均勻緻密的單壁奈米碳管膜,做為太陽能電池之載子的導電層,且在經過上電極的覆蓋後可以得到良好的金屬與單壁奈米碳管緊密接觸效果,因此載子在傳導時會選擇電阻值較小的路徑來做傳遞,是造成整體效率上升的主因。
將完成的太陽能電池元件做電性量測分析,開路電壓(Voc)為0.5 V,短路電流密度(Jsc)為24.1mA/cm2,填充係數(FF)則在加入單壁奈米碳管膜當作導電層後可從原本的47.7%增加至52.8%,轉換效率亦從5.929%增加至6.372%。
關鍵字:矽晶太陽能電池、奈米碳管
Since carbon nanotube (CNT) were discovered, many of research team continuity investigated in this field. Such as in electrical, thermal conductivity, mechanical are excellent properties. In this study, using alcohol catalytic chemical vapor deposition method (ACCVD) to grow of large area and uniform single-walled carbon nanotube (SWCNT) film in the emitter layer (n-type) to be the conductive layer of solar cell and through to the electrodes have a good coverage and contact effect of metal with SWCNT film. Then the carrier will select the transmission path of less resistance. It’s the main reason causing enhance in overall efficiency.
Complete solar cell makes electrical measurement analysis, open- circuit voltage (Voc) is 0.5V and the short-circuit current density (Jsc) is 24.1mA/cm2, then fill factor (FF) with SWCNT film as conductive layer will enhances from 47.7% to 52.8%, conversion efficiency also enhances from 5.929% to 6.372%.
Key word:Crystalline Silicon Solar Cell、Carbon Nanotubes
[1] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys, Vol. 25, 676-677, (1954)
[2] P. J. Britto, Kalathur S. V. Santhanam, A. Rubio, J. A. Alonso and P. M. Ajayan, “Improved Charge Transfer at Carbon Nanotube Electrodes,” Adv. Mater. , 154-157, No. 2, (1999)
[3] V. V. Iyengar, B. K. Nayak, M. C. Gupta, “Silicon PV devices based on a single step for doping, anti-reflection and surface passivation,” Solar Energy Materials & Solar Cells, Vol. 94, No.12, 2205-2211, (2010)
[4] U. Mohr, R. Leihkauf, K. Jacob, “Phosphorus distribution probles in 100-silicon using a spin-on source at low temperatures,” Appl. Phys., Vol. 64, No.1, 77-81, (1997)
[5] P. Doshi and A. Rohatgi, “18% Efficient Silicon Photovoltaic Devices by Rapid Thermal Diffusion and Oxidation,” IEEE Transactions on Electron Devices, Vol. 45, No. 8, 1710-1716, (1998)
[6] P. Doshi, A. Rohatgi, M. Ropp, Z. Chen, D. Ruby, D. L. Meier, “Rapid thermal processing of high-efficiency silicon solar cells with controlled in-situ annealing,” Solar Energy Materials and Solar Cells, Vol. 41-42, 31-39, (1996)
[7] A. K. Chu, J. S. Wang, Z. Y. Tsai, C. K. Lee, ”A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers,” Solar Energy Materials & Solar Cells, Vol. 93, No.8, 1276-1280, (2009)
[8] A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, A. Wang, ”Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Optics Communications, Vol. 172, No. 1-6, 139-151, (1999)
[9] I. Zubel and M. g. Kramkowska, ”The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions,” Sensors and Actuators A: Physical, Vol. 93, No. 2, 138-147, (2001)
[10] P. Campbell, M. A. Green, ”High performance light trapping textures for monocrystalline silicon solar cells,” Solar Energy Materials and Solar Cells, Vol. 65, No. 1-4, 369-375, (2001)
[11] Z. Chen, P. Sana, J. Salami and A. Rohatgi, ”A Novel and Effective Antireflection Coating PECVD SiO2/SiN for Si Solar Cells,” IEEE Transactions on Electron Devices, Vol. 40, No. 6, 1161-1165, (1993)
[12] D. S. Ruby, W. L. Wilbanks, C. B. Fieddermann, ”A Statistical Analysis of the Effect of PECVD Deposition Parameters on Surface and Bulk Recombination in Silicon Solar Cells,” IEEE First WCPEC, Vol. 2, No. 5-9, 1335-1338, (1994)
[13] P. Doshi, G. E. Jellison, Jr., and A. Rohatgi, ”Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics,” Applied Optics, Vol. 36, No. 30, 7826-7837, (1997)
[14] M. J. Kerr, J. Schmidt and A. Cuevas, J. H. Bultman, ”Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” Journal of Applied Physics, Vol. 89, No. 7, 3821-3826, (2001)
[15] T. Saitoh, O. Kamataki and T. Uematsu, ”Optimization of Antireflection Film Structures for Surface-Passivated Crystalline Silicon Solar Cells, “ Jpn. J. Appl. Phys., Vol. 33, No.4A, 1809-1813, (1994)
[16] C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée and L. A. Verhoef, ”Low temperature surface passivation for silicon solar cells,” Solar Energy Materials and Solar Cells, Vol. 40, No.4, 297-345, (1996)
[17] H. W. Kroto, A. W. Allaf and S. P. Balm, ”C60: Buckminsterfullerene,” Chem. Rev., Vol. 91, 1213-1235, (1991)
[18] S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56-58, (1991)
[19] M. S. Dresselhaus, G. Dresslhaus and R. Saito, ”Physics of Carbon Nanotubes,” Carbon, Vol. 33, No. 7, 883-891, (1995)
[20] J. Kong, A. M. Cassell, H. Dai, ”Chemical vapor deposition of methane for single-walled carbon nanotubes,” Chemical Physics Letters, Vol. 292, No.4-6, 567-574, (1998)
[21] V. Ivanov, A. Fonseca, J. B. Nagy, A. Luacs, P. Lambin, D. Bernaerts and X. B. Zhang, ”Catalytic Production and Purification of Nanotubules Having Fullerene-Scale Diameters,” Carbon, Vol. 33, No. 12, 1727-1738, (1995)
[22] A. Fonseca, K. Hernadi, P. Piedigrosso, J.-F. Colomer, K. Mukhopadhyay, R. Doome, S. Lazarescu, L.P. Biro, Ph. Lambin, P.A. Thiry, D. Bernaerts, J. B.Nagy, ”Synthesis of single- and multi-wall carbon nanotubes over supported Catalysts,” Appl. Phys. A 67, 11-22, (1998)
[23] C. Laurent, E. Flahaut, A. Peigney and A. Rousset, ”Metal nanoparticles for the catalytic synthesis of carbon nanotubes,” New J. Chem., No. 11, 1229-1237, (1998)
[24] E. Flahaut , A. Govindaraj, A. Peigney , Ch. Laurent , A. Rousset , C.N.R. Rao, ”Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions,” Chemical Physics Letters, Vol. 300, No.1-2, 236-242, (1999)
[25] P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, ”Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chemical Physics Letters, Vol. 313, 91-97, (1999)
[26] A. Peigney, Ch. Laurent, F. Dobigeon, and A. Rousset, ”Carbon nanotubes grown in situ by a novel catalytic method,” J. Mater. Res., Vol. 12, No. 3, 613-615, (1997)
[27] A. Peigney, P. Coquay, E. Flahaut, R. E. Vandenberghe, E. D. Grave and C. Laurent, ”A Study of the Formation of Single- and Double-Walled Carbon Nanotubes by a CVD Method,” J. Phys. Chem. B, 9699-9710, (2001)
[28] S.Iijima & T. Ichihashi, ”Single-shell carbon nanotubes of 1-nm diameter,“ Nature 363, 603-605, (1993)
[29] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer and R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes,” Science 26, Vol. 273, No. 5274, 483-487, (1996)
[30] H. Sato, K. Hata, K. Hiasa, Y. Saito, ”Low temperature growth of carbon nanotubes by alcohol catalytic chemical vapor deposition for field emitter applications,” J. Vac. Sci. Technol. B, Vol. 25, No.2, 579-582, (2007)
[31] A. J. Hart, A. H. Slocum, L. Royer, ”Growth of conformal single-walled carbon nanotube films from Mo/Fe/Al2O3 deposited by electron beam evaporation,” Carbon , Vol. 44, No.2, 348-359, (2006)
[32] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate & H. Dai, ”Synthesis of individual singlewalled carbon nanotubes on patterned silicon wafers,” Nature, Vol. 395 , 878-881, (1998)
[33] L. C. Jin, K. D. Woon, L. T. Jae, C. Y. Chul, P. Y. Soo, K. W. Seok, L. Y. Hee, C. W. Bong, L. N. Sung, K. J. Min, C. Y. Gak, Y. S. Chang, ”Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition,” Applied Physics Letters, Vol.75 , No. 12, 1721-1723, (1999)
[34] D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan and A. Borgna, ”A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst,” Journal of Nanoparticle Research, Vol. 4, No. 1-2, 131-136, (2002)
[35] S. Maruyama, Y. Miyauchi, T. Edamura, Y. garashi, S. Chiashi, Y. Murakami, ”Synthesis of single-walled carbon nanotubes with narrow diameter-distribution from fullerene,” Chemical Physics Letters, Vol. 375, 553-559, (2003)
[36] S. H. Shiau, C. W. Liu, C. Gau and B. T. Dai, “Growth of Single-Walled Carbon Nanotubes Thin Film and Its Patterning As An N-Type Field-Effect Transistor Device Using Integrated Circuit Compatible Process,” Nanotechnology, Vol. 19, No. 10, 1-7, (2008)
[37] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chemical Physics Letters, Vol. 360, No. 3-4, 229-234, (2002)
[38] Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama, “Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates,” Chemical Physics Letters, Vol. 377, No. 1-2, 49-54, (2003)
[39] Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama, “Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol,” Chemical Physics Letters, Vol. 374, No.1-2, 53-58, (2003)
[40] Y. Murakami , S. Chiashi , Y. Miyauchi , M. Hu , M. Ogura , T. Okubo, S. Maruyama, “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy,” Chemical Physics Letters, Vol. 385, No. 3-4, 298-303, (2004)
[41] P. Kim, T. W. Odom, J. L. Huang and C. M. Lieber, ”Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States,” Physical Review Letters, Vol. 82, No.6, 1225-1228, (1999)
[42] 蔡淑慧,拉曼光譜在奈米碳管檢測上之應用,中央研究院物理所-奈米通訊,第十二卷第二期
[43] S. Narasimha, A. Rohatgi, ”An Optimized Rapid Aluminum Back Surface Field Technique for Silicon Solar Cells,” IEEE Transactions on Electron Devices, Vol. 46, No. 7, 1363-1370, (1999)
[44] P. Sana and A. Rohatgi, J. P. Kalejs and R. O. Bell, ”The Effect of Aluminum Treatment and Forming Gas Anneal on Efg Silicon Solar Cells,” Photovoltaic Specialists Conference, No.10-14, 111-116, (1993)
[45] Chalfoun, L. Louise, “Process optimization of alloyed aluminum backside contacts for silicon solar cells,“ M. S. thesis, Massachusetts Institute of Technology, (1996)
[46] C. R. Selvakumar, D. J. Roulston, S. C. Jain, J. Tsao, “Effective recombination velocity of low–high junctions,” Solid-State Electron, Vol. 31, No.8, 1346-1348, (1988)
[47] J. A. Amick, F. J. Bottari and J. Hanoka, “The effect of aluminum thickness on solar cell performance,” J. Electrochem. Soc., Vol. 141, No.6, 1577-1585, (1994)