簡易檢索 / 詳目顯示

研究生: 周孟俞
Chou, Meng-Yu
論文名稱: 製備含有奈米碳管膜之矽晶太陽能電池研究
Fabrication and Study of Carbon Nanotubes Film on Crystalline Silicon Solar Cell
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 93
中文關鍵詞: 矽晶太陽能電池奈米碳管
外文關鍵詞: Crystalline Silicon Solar Cell, Carbon Nanotubes
相關次數: 點閱:83下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從奈米碳管的發現以來,不少的研究團隊就持續在這個領域中研究,無論在電學、熱傳導、機械等方面都有很優越的特性。本研究中利用酒精催化化學氣相沉積的方式,在射極層(n-type)表面成長大面積且均勻緻密的單壁奈米碳管膜,做為太陽能電池之載子的導電層,且在經過上電極的覆蓋後可以得到良好的金屬與單壁奈米碳管緊密接觸效果,因此載子在傳導時會選擇電阻值較小的路徑來做傳遞,是造成整體效率上升的主因。
    將完成的太陽能電池元件做電性量測分析,開路電壓(Voc)為0.5 V,短路電流密度(Jsc)為24.1mA/cm2,填充係數(FF)則在加入單壁奈米碳管膜當作導電層後可從原本的47.7%增加至52.8%,轉換效率亦從5.929%增加至6.372%。
    關鍵字:矽晶太陽能電池、奈米碳管

    Since carbon nanotube (CNT) were discovered, many of research team continuity investigated in this field. Such as in electrical, thermal conductivity, mechanical are excellent properties. In this study, using alcohol catalytic chemical vapor deposition method (ACCVD) to grow of large area and uniform single-walled carbon nanotube (SWCNT) film in the emitter layer (n-type) to be the conductive layer of solar cell and through to the electrodes have a good coverage and contact effect of metal with SWCNT film. Then the carrier will select the transmission path of less resistance. It’s the main reason causing enhance in overall efficiency.
    Complete solar cell makes electrical measurement analysis, open- circuit voltage (Voc) is 0.5V and the short-circuit current density (Jsc) is 24.1mA/cm2, then fill factor (FF) with SWCNT film as conductive layer will enhances from 47.7% to 52.8%, conversion efficiency also enhances from 5.929% to 6.372%.
    Key word:Crystalline Silicon Solar Cell、Carbon Nanotubes

    目錄 考試合格簽名頁 中文摘要 英文摘要 致謝 目錄....................................................................................................I 表目錄.............................................................................................IV 圖目錄..............................................................................................V 第一章 太陽能電池序論.................................................................1 1.1研究背景與前言.....................................................................1 1.2太陽能電池工作原理.............................................................2 1.3太陽能電池電路模型與損耗機制.........................................3 1.4太陽能電池基本結構.............................................................7 第二章 奈米碳管發展概論.............................................................9 2.1奈米碳管的發現.....................................................................9 2.2奈米碳管的結構與特性.........................................................9 2.3奈米碳管的成長機制...........................................................10 2.4奈米碳管製備種類...............................................................11 第三章 實驗製程與量測分析.......................................................14 3.1 太陽能電池製作流程與性能分析......................................14 3.1-1實驗材料及設備............................................................14 3.1-2實驗製程介紹................................................................17 3.1-3太陽能電池元件量測....................................................18 3.2奈米碳管薄膜成長與分析....................................................20 3.2-1實驗材料........................................................................20 3.2-2利用酒精催化劑化學氣相沉積成長奈米碳管............21 3.2-3奈米碳管成長製程........................................................21 3.2-4奈米碳管量測分析........................................................23 第四章 實驗結果與討論...............................................................26 4.1 太陽能電池各種製程參數研究..........................................26 4.1-1 不同熱擴散溫度及時間比較.......................................26 4.1-2 不同蝕刻時間與表面結構的形貌及反射率分析.......26 4.1-3 不同退火溫度及時間對鋁背電極影響.......................27 4.1-4 不同鋁背電極厚度的比較...........................................28 4.1-5 不同抗反射層(SiN)厚度的影響..................................29 4.2 奈米碳管各種製程參數研究..............................................30 4.2-1 不同催化劑濃度與成長時間之奈米碳管分析...........30 4.2-2 不同溫度與成長時間之奈米碳管分析.......................32 4.2-3 改善矽基板表面之親疏水性並成長奈米碳管分析...33 4.3 將奈米碳管薄膜當做太陽能電池之導電層分析...............34 第五章 結論...................................................................................36 參考文獻.........................................................................................37 附錄.................................................................................................44 自述.................................................................................................93 表目錄 表2-1 各種奈米碳管製程方法............................................................47 表3-1 熱擴散前四點探針量測之片電阻值..........................................47 表3-2 熱擴散後四點探針量測之片電阻值..........................................47 表4-1不同奈米碳管成長參數之四點探針量測片電阻值比較...............48 表4-2 Co & Mo-0.01wt%, 30mins之霍爾量測分析................................48 表4-3 Co & Mo-0.05wt%, 15mins之霍爾量測分析................................48 表4-4 Co & Mo-0.05wt%, 30mins之霍爾量測分析................................49 表4-5 Co & Mo-0.1wt%, 15mins之霍爾量測分析.................................49 表4-6 Co & Mo-0.1wt%, 30mins之霍爾量測分析.................................49 表4-7 Co-0.03wt% & Mo-0.01wt%, 30mins之霍爾量測分析..................49 圖目錄 圖3-1 太陽能電池製作流程圖............................................................50 圖3-2 SIMS量測分析磷擴散之濃度與深度分佈圖...............................51 圖3-3 酒精催化劑化學氣相沉積成長奈米碳管之設備示意圖..............51 圖3-4 浸泡金屬催化劑之設備圖........................................................52 圖3-5單壁奈米碳管對應各種振動模式之拉曼光譜圖..........................52 圖3-6 掃描式顯微鏡觀察奈米碳管薄膜之厚度...................................53 圖3-7 掃描式顯微鏡觀察奈米碳管薄膜之厚度...................................53 圖4-1 不同擴散溫度及時間對Voc的比較..........................................54 圖4-2 不同擴散溫度及時間對Jsc的比較...........................................54 圖4-3 不同擴散溫度及時間對FF的比較............................................55 圖4-4 不同擴散溫度及時間對轉換效率(η)的比較..............................55 圖4-5 不同KOH蝕刻時間比較(Top View),分別是(a)1.5、(b)3、(c)5、(d)7、 (e)10、(f)15和(g)20mins..........................................................56 圖4-6 不同KOH蝕刻時間比較(Cross-section),分別是(a)1.5、(b)3、(c)5、 (d)7、(e)10、(f)15和(g)20mins.................................................57 圖4-7 不同KOH蝕刻時間的反射率比較............................................58 圖4-8 鋁背電極460度和不同退火時間之I-V曲線量測比較...............58 圖4-9 鋁背電極560度和不同退火時間之I-V曲線量測比較...............59 圖4-10 鋁背電極800度和不同退火時間之I-V曲線量測比較.............59 圖4-11 不同鋁背電極厚度之I-V曲線量測比較..................................60 圖4-12 KOH蝕刻金字塔結構後沉積不同厚度的SiN反射率比較........60 圖4-13 沉積抗反射層SiN 800Å與960Å的反射率比較.......................61 圖4-14 KOH蝕刻金字塔結構後沉積不同厚度的SiN量子效率比較…..61 圖4-15 金字塔結構表面沉積SiN 800Å之IQE與EQE比較................62 圖4-16 金字塔結構表面沉積不同厚度的SiN之 I-V曲線量測比較.....62 圖4-17 金字塔結構表面沉積SiN 800Å之I-V曲線量測比較...............63 圖4-18 Co & Mo-0.01wt%, 15mins之SEM表面形貌圖.........................63 圖4-19 Co & Mo-0.01wt%, 30mins之SEM表面形貌圖.........................64 圖4-20 Co & Mo-0.05wt%, 15mins之SEM表面形貌圖.........................64 圖4-21 Co & Mo-0.05wt%, 30mins之SEM表面形貌圖.........................65 圖4-22 Co & Mo-0.1wt%, 15mins之SEM表面形貌圖...........................65 圖4-23 Co & Mo-0.1wt%, 30mins之SEM表面形貌圖...........................66 圖4-24 Co-0.03wt% & Mo-0.01wt%, 15mins之SEM表面形貌圖............66 圖4-25 Co-0.03wt% & Mo-0.01wt%, 30mins之SEM表面形貌圖............67 圖4-26 Co & Mo-0.01wt%不同成長時間之G/D值比較.........................67 圖4-27 Co & Mo-0.05wt%不同成長時間之G/D值比較.........................68 圖4-28 Co & Mo-0.1wt%不同成長時間之G/D值比較...........................68 圖4-29 Co-0.03wt% & Mo-0.01wt%不同成長時間之G/D值比較...........68 圖4-30 霍爾量測奈米碳管之片電阻值比較.........................................69 圖4-31 600℃, 15mins 低倍率之SEM表面形貌圖................................69 圖4-32 600℃, 15mins 高倍率之SEM表面形貌圖................................70 圖4-33 600℃, 30mins 低倍率之SEM表面形貌圖................................70 圖4-34 600℃, 30mins 高倍率之SEM表面形貌圖................................71 圖4-35 650℃, 15mins 低倍率之SEM表面形貌圖................................71 圖4-36 650℃, 15mins 高倍率之SEM表面形貌圖................................72 圖4-37 650℃, 30mins 低倍率之SEM表面形貌圖................................72 圖4-38 650℃, 30mins 高倍率之SEM表面形貌圖................................73 圖4-39 700℃, 15mins 低倍率之SEM表面形貌圖................................73 圖4-40 700℃, 15mins 高倍率之SEM表面形貌圖................................74 圖4-41 700℃, 30mins 低倍率之SEM表面形貌圖................................74 圖4-42 700℃, 30mins 高倍率之SEM表面形貌圖................................75 圖4-43不同低溫製程與時間成長奈米碳管之G/D值比較....................76 圖4-44 浸泡金屬催化劑後尚未製程前之SEM-EDS元素分析..............77 圖4-45 浸泡金屬催化劑且650℃製程後之SEM-EDS元素分析...........77 圖4-46 Co & Mo-0.05wt%, 15mins,經過SC-1 & SC-2洗淨的矽晶片之SEM 表面形貌圖...........................................................................78 圖4-47 Co & Mo-0.05wt%, 15mins,經過SC-1 & SC-2洗淨的太陽能電池 晶片之SEM表面形貌圖.........................................................78 圖4-48 (a) 經過SC-1 & SC-2洗淨之矽與太陽能電池晶片拉曼分析; (b)&(c) 經過SC-1 & SC-2洗淨與氧處理 90sec之矽與太陽能電 池晶片拉曼分析.....................................................................79 圖4-49 矽晶片表面經過SC-1 & SC-2洗淨前(a)、後(b)的接觸角比較..80 圖4-50 太陽能電池晶片表面經過SC-1 & SC-2洗淨前(a)、後(b)的接觸角 比較....................................................................................80 圖4-51 矽晶片表面經過SC-1 & SC-2洗淨且不同氧處理時間的接觸角比 較,分別是(a)30 sec、(b)60 sec、(c)90 sec和(d)120 sec.........81 圖4-52 太陽能電池晶片表面經過SC-1 & SC-2洗淨且不同氧處理時間的 接觸角比較,分別是(a)30 sec、(b)60 sec、(c)90 sec和(d)120 sec.........................................................................................82 圖4-53 Co & Mo-0.05wt%, 15mins,經過SC-1 & SC-2洗淨和氧處理90 sec 的矽晶片之SEM表面形貌圖...................................................83 圖4-54 Co & Mo-0.05wt%, 15mins,經過SC-1 & SC-2洗淨和氧處理90 sec 的太陽能電池晶片之SEM表面形貌圖....................................83 圖4-55 Co & Mo-0.1wt%, 15mins,經過SC-1 & SC-2洗淨和氧處理90 sec 的矽晶片之SEM表面形貌圖..................................................84 圖4-56 Co & Mo-0.1wt%, 15mins,經過SC-1 & SC-2洗淨和氧處理90 sec 的太陽能電池晶片之SEM表面形貌圖....................................84 圖4-57 Co & Mo-0.1wt%, 15mins,在金字塔結構表面成長奈米碳管之 SEM表面形貌圖....................................................................85 圖4-58 Co & Mo-0.1wt%, 30mins,在金字塔結構表面成長奈米碳管之 SEM表面形貌圖....................................................................85 圖4-59 Co & Mo-0.1wt與不同成長時間在金字塔結構表面成長奈米碳管 之G/D值比較........................................................................86 圖4-60 Co & Mo-0.1wt與不同成長時間在金字塔結構表面成長奈米碳管 之太陽能電池轉換效率比較...................................................86 圖4-61 Co & Mo-0.1wt與不同成長時間在金字塔結構表面成長奈米碳管 之太陽能電池量子效率比較...................................................87 圖4-62在金字塔結構表面成長奈米碳管後濺鍍正面鋁電極,(左半部較黑 部分)未覆蓋鋁電極,(右半部較白部分)覆蓋鋁電極之SEM表面 形貌圖...................................................................................87 圖4-63在金字塔結構表面成長奈米碳管後濺鍍正面鋁電極,(左半部)未 覆蓋鋁電極,(右半部)覆蓋鋁電極之SEM表面形貌圖...........88 圖4-64 霍爾量測資料分析奈米碳管之電阻係數與材料電性之關係......88 圖6-1 矽奈米線結構之SEM圖,(a)在太陽能電池晶片基板表面上 (b)在金字塔結構基板表面上............................................................89 圖6-2 浸泡過DHF後之矽奈米線結構之SEM圖,(a)在太陽能電池晶片基板表面上 (b)在金字塔結構基板表面上.................................89 圖6-3 矽奈米線結構與矽奈米線及金字塔結構之I-V曲線量測...........90 圖6-4 矽量子點薄膜太陽能電池元件製作流程圖................................90 圖6-5 直徑5nm之矽量子點結構TEM圖(形成於nitride layer with silicon rich) .......................................................................................91 圖6-6矽量子點薄膜太陽能電池元件之I-V曲線量測比較...................91 圖6-7 使用高濃度SOD製備矽晶太陽能電池之I-V曲線量測比較.......92

    [1] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys, Vol. 25, 676-677, (1954)
    [2] P. J. Britto, Kalathur S. V. Santhanam, A. Rubio, J. A. Alonso and P. M. Ajayan, “Improved Charge Transfer at Carbon Nanotube Electrodes,” Adv. Mater. , 154-157, No. 2, (1999)
    [3] V. V. Iyengar, B. K. Nayak, M. C. Gupta, “Silicon PV devices based on a single step for doping, anti-reflection and surface passivation,” Solar Energy Materials & Solar Cells, Vol. 94, No.12, 2205-2211, (2010)
    [4] U. Mohr, R. Leihkauf, K. Jacob, “Phosphorus distribution probles in 100-silicon using a spin-on source at low temperatures,” Appl. Phys., Vol. 64, No.1, 77-81, (1997)
    [5] P. Doshi and A. Rohatgi, “18% Efficient Silicon Photovoltaic Devices by Rapid Thermal Diffusion and Oxidation,” IEEE Transactions on Electron Devices, Vol. 45, No. 8, 1710-1716, (1998)
    [6] P. Doshi, A. Rohatgi, M. Ropp, Z. Chen, D. Ruby, D. L. Meier, “Rapid thermal processing of high-efficiency silicon solar cells with controlled in-situ annealing,” Solar Energy Materials and Solar Cells, Vol. 41-42, 31-39, (1996)
    [7] A. K. Chu, J. S. Wang, Z. Y. Tsai, C. K. Lee, ”A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers,” Solar Energy Materials & Solar Cells, Vol. 93, No.8, 1276-1280, (2009)
    [8] A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, A. Wang, ”Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Optics Communications, Vol. 172, No. 1-6, 139-151, (1999)
    [9] I. Zubel and M. g. Kramkowska, ”The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions,” Sensors and Actuators A: Physical, Vol. 93, No. 2, 138-147, (2001)
    [10] P. Campbell, M. A. Green, ”High performance light trapping textures for monocrystalline silicon solar cells,” Solar Energy Materials and Solar Cells, Vol. 65, No. 1-4, 369-375, (2001)
    [11] Z. Chen, P. Sana, J. Salami and A. Rohatgi, ”A Novel and Effective Antireflection Coating PECVD SiO2/SiN for Si Solar Cells,” IEEE Transactions on Electron Devices, Vol. 40, No. 6, 1161-1165, (1993)
    [12] D. S. Ruby, W. L. Wilbanks, C. B. Fieddermann, ”A Statistical Analysis of the Effect of PECVD Deposition Parameters on Surface and Bulk Recombination in Silicon Solar Cells,” IEEE First WCPEC, Vol. 2, No. 5-9, 1335-1338, (1994)
    [13] P. Doshi, G. E. Jellison, Jr., and A. Rohatgi, ”Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics,” Applied Optics, Vol. 36, No. 30, 7826-7837, (1997)
    [14] M. J. Kerr, J. Schmidt and A. Cuevas, J. H. Bultman, ”Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” Journal of Applied Physics, Vol. 89, No. 7, 3821-3826, (2001)
    [15] T. Saitoh, O. Kamataki and T. Uematsu, ”Optimization of Antireflection Film Structures for Surface-Passivated Crystalline Silicon Solar Cells, “ Jpn. J. Appl. Phys., Vol. 33, No.4A, 1809-1813, (1994)
    [16] C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée and L. A. Verhoef, ”Low temperature surface passivation for silicon solar cells,” Solar Energy Materials and Solar Cells, Vol. 40, No.4, 297-345, (1996)
    [17] H. W. Kroto, A. W. Allaf and S. P. Balm, ”C60: Buckminsterfullerene,” Chem. Rev., Vol. 91, 1213-1235, (1991)
    [18] S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56-58, (1991)
    [19] M. S. Dresselhaus, G. Dresslhaus and R. Saito, ”Physics of Carbon Nanotubes,” Carbon, Vol. 33, No. 7, 883-891, (1995)
    [20] J. Kong, A. M. Cassell, H. Dai, ”Chemical vapor deposition of methane for single-walled carbon nanotubes,” Chemical Physics Letters, Vol. 292, No.4-6, 567-574, (1998)
    [21] V. Ivanov, A. Fonseca, J. B. Nagy, A. Luacs, P. Lambin, D. Bernaerts and X. B. Zhang, ”Catalytic Production and Purification of Nanotubules Having Fullerene-Scale Diameters,” Carbon, Vol. 33, No. 12, 1727-1738, (1995)
    [22] A. Fonseca, K. Hernadi, P. Piedigrosso, J.-F. Colomer, K. Mukhopadhyay, R. Doome, S. Lazarescu, L.P. Biro, Ph. Lambin, P.A. Thiry, D. Bernaerts, J. B.Nagy, ”Synthesis of single- and multi-wall carbon nanotubes over supported Catalysts,” Appl. Phys. A 67, 11-22, (1998)
    [23] C. Laurent, E. Flahaut, A. Peigney and A. Rousset, ”Metal nanoparticles for the catalytic synthesis of carbon nanotubes,” New J. Chem., No. 11, 1229-1237, (1998)
    [24] E. Flahaut , A. Govindaraj, A. Peigney , Ch. Laurent , A. Rousset , C.N.R. Rao, ”Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions,” Chemical Physics Letters, Vol. 300, No.1-2, 236-242, (1999)
    [25] P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, ”Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chemical Physics Letters, Vol. 313, 91-97, (1999)
    [26] A. Peigney, Ch. Laurent, F. Dobigeon, and A. Rousset, ”Carbon nanotubes grown in situ by a novel catalytic method,” J. Mater. Res., Vol. 12, No. 3, 613-615, (1997)
    [27] A. Peigney, P. Coquay, E. Flahaut, R. E. Vandenberghe, E. D. Grave and C. Laurent, ”A Study of the Formation of Single- and Double-Walled Carbon Nanotubes by a CVD Method,” J. Phys. Chem. B, 9699-9710, (2001)
    [28] S.Iijima & T. Ichihashi, ”Single-shell carbon nanotubes of 1-nm diameter,“ Nature 363, 603-605, (1993)
    [29] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer and R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes,” Science 26, Vol. 273, No. 5274, 483-487, (1996)
    [30] H. Sato, K. Hata, K. Hiasa, Y. Saito, ”Low temperature growth of carbon nanotubes by alcohol catalytic chemical vapor deposition for field emitter applications,” J. Vac. Sci. Technol. B, Vol. 25, No.2, 579-582, (2007)
    [31] A. J. Hart, A. H. Slocum, L. Royer, ”Growth of conformal single-walled carbon nanotube films from Mo/Fe/Al2O3 deposited by electron beam evaporation,” Carbon , Vol. 44, No.2, 348-359, (2006)
    [32] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate & H. Dai, ”Synthesis of individual singlewalled carbon nanotubes on patterned silicon wafers,” Nature, Vol. 395 , 878-881, (1998)
    [33] L. C. Jin, K. D. Woon, L. T. Jae, C. Y. Chul, P. Y. Soo, K. W. Seok, L. Y. Hee, C. W. Bong, L. N. Sung, K. J. Min, C. Y. Gak, Y. S. Chang, ”Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition,” Applied Physics Letters, Vol.75 , No. 12, 1721-1723, (1999)
    [34] D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan and A. Borgna, ”A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst,” Journal of Nanoparticle Research, Vol. 4, No. 1-2, 131-136, (2002)
    [35] S. Maruyama, Y. Miyauchi, T. Edamura, Y. garashi, S. Chiashi, Y. Murakami, ”Synthesis of single-walled carbon nanotubes with narrow diameter-distribution from fullerene,” Chemical Physics Letters, Vol. 375, 553-559, (2003)
    [36] S. H. Shiau, C. W. Liu, C. Gau and B. T. Dai, “Growth of Single-Walled Carbon Nanotubes Thin Film and Its Patterning As An N-Type Field-Effect Transistor Device Using Integrated Circuit Compatible Process,” Nanotechnology, Vol. 19, No. 10, 1-7, (2008)
    [37] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chemical Physics Letters, Vol. 360, No. 3-4, 229-234, (2002)
    [38] Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama, “Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates,” Chemical Physics Letters, Vol. 377, No. 1-2, 49-54, (2003)
    [39] Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama, “Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol,” Chemical Physics Letters, Vol. 374, No.1-2, 53-58, (2003)
    [40] Y. Murakami , S. Chiashi , Y. Miyauchi , M. Hu , M. Ogura , T. Okubo, S. Maruyama, “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy,” Chemical Physics Letters, Vol. 385, No. 3-4, 298-303, (2004)
    [41] P. Kim, T. W. Odom, J. L. Huang and C. M. Lieber, ”Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States,” Physical Review Letters, Vol. 82, No.6, 1225-1228, (1999)
    [42] 蔡淑慧,拉曼光譜在奈米碳管檢測上之應用,中央研究院物理所-奈米通訊,第十二卷第二期
    [43] S. Narasimha, A. Rohatgi, ”An Optimized Rapid Aluminum Back Surface Field Technique for Silicon Solar Cells,” IEEE Transactions on Electron Devices, Vol. 46, No. 7, 1363-1370, (1999)
    [44] P. Sana and A. Rohatgi, J. P. Kalejs and R. O. Bell, ”The Effect of Aluminum Treatment and Forming Gas Anneal on Efg Silicon Solar Cells,” Photovoltaic Specialists Conference, No.10-14, 111-116, (1993)
    [45] Chalfoun, L. Louise, “Process optimization of alloyed aluminum backside contacts for silicon solar cells,“ M. S. thesis, Massachusetts Institute of Technology, (1996)
    [46] C. R. Selvakumar, D. J. Roulston, S. C. Jain, J. Tsao, “Effective recombination velocity of low–high junctions,” Solid-State Electron, Vol. 31, No.8, 1346-1348, (1988)
    [47] J. A. Amick, F. J. Bottari and J. Hanoka, “The effect of aluminum thickness on solar cell performance,” J. Electrochem. Soc., Vol. 141, No.6, 1577-1585, (1994)

    下載圖示 校內:2013-08-31公開
    校外:2013-08-31公開
    QR CODE