研究生: |
蔡秉宸 Tsai, Bing-Chen |
---|---|
論文名稱: |
廢棄物旋轉窯灰碴管理及其資源化之研究—以塑橡膠製造業為例 Study on the management of waste rotary kiln ash and its recovery—A case study of plastic and rubber materials manufacturing |
指導教授: |
張祖恩
Chang, Juu-En |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 131 |
中文關鍵詞: | 廢棄物旋轉窯 、廢棄物進料管理 、灰碴資源化效益 |
外文關鍵詞: | waste rotary kiln, waste management, incinerated ash recovery |
相關次數: | 點閱:103 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究對象為某塑橡膠製造業之旋轉窯焚化爐,其主要進料事業廢棄物種類為有機污泥、廢塑膠、油泥與廢油,約佔整體廢棄物進料量的95 %,每日進料量約為50 ~ 70噸。此外,由於塑橡膠製程中,常需要分離不同相之物質且須將製程中高揮發性物質轉化,因此進料種類中尚有合計佔0.7 % 之不鏽鋼濾網及廢棄氧化鋁球觸媒。
實驗得知,將不鏽鋼濾網及廢棄氧化鋁球與其他廢棄物共同焚化,衍生之焚化灰碴具有總鉻溶出濃度超標、粒徑不均、吸水率過高與灰碴衍生量增加之問題,不僅使得焚化灰碴處理成本大幅上升,也囿於規範無法進行資源化再利用,首先建議實施灰碴重金屬無害化策略,排除不鏽鋼濾網與廢棄物減量化策略,排除氧化鋁球,以期改善焚化灰碴衍生之問題。進料排除不鏽鋼濾網之後,焚化灰碴中所含鉻的總量濃度分別從1035 mg/kg及1567 mg/kg下降至310 mg/kg與398 mg/kg,毒性特性程序(TCLP)之溶出濃度也從5.17 mg/L與15.12 mg/L分別降至0.03 mg/L與0.14 mg/L,顯示鉻的總量及溶出濃度皆有顯著明顯的下降且可符合TCLP之規範。另進料排除氧化鋁球之後,氧化鋁球於底碴中佔比大幅降低,比表面積及吸水率分別從14.15 m2/g及9.6 %,降低至0.95 m2/g與6.1 %,顯示底碴吸水率過高之問題有一定程度改善,因此更有利於將其資源化再利用。
從材料特性分析中,由卜作嵐活性指數試驗發現,飛灰之7天與28天活性指數皆符合標準,具有作為卜作嵐摻料的潛力,惟底碴之7天與28天活性指數並不符標準,並不適合作為卜作嵐摻料,僅適合作為填充材料。另發現實施無害化與減量化之灰碴產製之水泥砂漿試體,其飛灰以20 % 之比例可符合混凝土磚A級磚標準,底碴以10 % 比例可符合B級磚標準。此外,若旋轉窯焚化爐操作條件為專燒有機污泥,發現其材料特性及工程特性皆不如實施無害化與減量化之灰碴,因此歸納出實施無害化與減量化之灰碴具有較高的再利用潛力。另由毒性特性溶出程序、pH依賴性試驗及桶槽溶出試驗等環境友善性評估中顯示焚化灰碴及其水泥製品具有良好的環境友善性。
評估實施無害化與減量化之效益,可得每月節省570,000元之灰碴處理成本,且不鏽鋼濾網回收效益最高約可達43,500元/月,整體灰碴處理效益達628,000元/月。另外,由旋轉窯能量平衡分析估算出節省之單位重油用量為32公升/噸廢棄物,重油節省之成本為504,000元/月。根據每月灰碴衍生量推估其產製植草磚之潛在產值,最高分別約可達到170萬與160萬元新台幣。
The main types of industrial waste of plastic and rubber manufacturing are organic sludge, wasted plastic, oil sludge, and wasted oil. In addition, there are small number of stainless-steel filters and wasted aluminum ball catalysts in the feeding. Experiments have shown that co-incineration of stainless-steel filters and wasted aluminum balls with other wastes, the derived incinerated ash has some problems (1) toxicity characteristic; (2) uneven particle size; (3) excessive water absorption. Due to these problems, the treatment fee of incinerated ash increased sharply, and it cannot be easily reused. After excluding stainless-steel filters, TCLP and total concentration of chromium in bottom ash and fly ash both decreased significantly. After excluding wasted aluminum balls, the particle size distribution of bottom ash has been more intensively. In addition, water absorption rate of bottom ash has reduced. Experiments have shown that fly ash can be used as Pozzolanic materials, but bottom ash cannot. Additionally, it was found that fly ash cement mortar can meet the standard of level A concrete sod and bottom ash can meet the standard of level B concrete sod. Furthermore, TCLP, pH dependent test, and tank leaching test shown that fly ash and bottom ash both are environmentally friendly. Moreover, after excluding stainless-steel filters and wasted aluminum balls, the overall ash treatment benefit reaches approximately NT$630 thousand per month. The maximum output value of incinerated concrete sod can reach approximately NT$1.73 million per month.
Arun, N. R., Singh, P., & Gupta, S., Utilisation of ground bottom ash in concrete, Materials Today: Proceedings, vol. 32, pp. 663–669, 2020.
Belevi, H., & Langmeier, M., Factors determining the element behavior in municipal solid waste incinerators. 2. Laboratory experiments, Environmental Science & Technology, vol. 34, No. 12, pp. 2507–2512, 2000.
Bie, R., Chen, P., Song, X., & Ji, X., Characteristics of municipal solid waste incineration fly ash with cement solidification treatment, Journal of the Energy Institute, vol. 89, 2015.
Chang, C.-Y., Wang, C.-F., Mui, D. T., Cheng, M.-T., & Chiang, H.-L., Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan, Journal of Hazardous Materials, vol. 165, No. 1, pp. 766–773, 2009.
Chen, Z., Lu, S., Tang, M., Ding, J., Buekens, A., Yang, J., Qiu, Q., & Yan, J., Mechanical activation of fly ash from MSWI for utilization in cementitious materials, Waste Management (New York, N.Y.), vol. 88, pp. 182—190, 2019.
Cullity, B. D., & Stock, S. R., Elements of X-ray Diffraction, pp. 1–664, 2001.
Dijkstra, J. J., Van der Sloot, H. A., & Comans, R. N. J., Process identification and model development of contaminant transport in MSWI bottom ash, Waste Management, vol. 22, No. 5, pp. 531–541, 2002.
Drobny, J. G., 1 - Introduction, In J. G. Drobny (Ed.), Handbook of Thermoplastic Elastomers (Second Edition) pp. 1–11, 2014.
El-Haggar, S. M., Current practice and future sustainability, Sustainable Industrial Design and Waste Management, pp. 1–19, 2007.
Fischedick, M., Roy, J., Abdel-Aziz, A., Acquaye, A., Allwood, J. M., Ceron, J.-P., Geng, Y., Kheshgi, H., Lanza, A., Perczyk, D., Price, L., Santalla, E., Sheinbaum, C., & Tanaka, K., Chapter V. Industry, Industry, pp. 739–810, 2014.
Garcia-Lodeiro, I., Palomo, A., & Fernández-Jiménez, A., 2 - An overview of the chemistry of alkali-activated cement-based binders, In Handbook of Alkali-Activated Cements, Mortars and Concretes pp. 19–47, 2015.
Haiying, Z., Youcai, Z., & Jingyu, Q., Study on use of MSWI fly ash in ceramic tile, Journal of Hazardous Materials, vol. 141, No. 1, pp. 106–114, 2007.
He, P.-J., Zhang, H., Zhang, C.-G., & Lee, D.-J., Characteristics of air pollution control residues of MSW incineration plant in Shanghai, Journal of Hazardous Materials, vol. 116, No. 3, pp. 229–237, 2004.
Hjelmar, O., Disposal strategies for municipal solid waste incineration residues, Journal of Hazardous Materials, vol. 47, No. 1, pp. 345–368, 1996.
Kikuchi, R., Recycling of municipal solid waste for cement production: Pilot-scale test for transforming incineration ash of solid waste into cement clinker, Resources, Conservation and Recycling, vol. 31, pp. 137–147, 2001.
Kim, D. H., Mulholland, J. A., & Ryu, J.-Y., Chlorinated naphthalene formation from the oxidation of dichlorophenols, Chemosphere, vol. 67, No. 9, 2007.
Kosson, D. S., Kosson, T. T., & Van der Sloot, H., Evaluation of solidification/stabilization treatment processes for municipal waste combustion residues, 1993.
Kou, S. C., & Poon, C. S., Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates, Construction and Building Materials, vol. 23, No. 8, pp. 2877–2886, 2009.
Li, Y., Hao, L., & Chen, X., Analysis of MSWI bottom ash reused as alternative material for cement production, Procedia Environmental Sciences, vol. 31, pp. 549–553, 2016.
Mehta, P. K., Mehta, P. K., Monteiro, P. J. M., & Monteiro, P., Concrete: Structure, Properties, and Materials, 1993.
Park, Y., & Heo, J., Vitrification of fly ash from municipal solid waste incinerator, Journal of Hazardous Materials, vol. 91, pp. 83–93, 2002.
Rafieizonooz, M., Mirza, J., Salim, M. R., Hussin, M. W., & Khankhaje, E., Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement, Construction and Building Materials, vol. 116, pp. 15–24, 2016.
Shrivastava, A., Additives for Plastics, In A. Shrivastava (Ed.), Introduction to Plastics Engineering pp. 111–141, 2018.
Tchobanoglous, G., Integrated solid waste management : engineering principles and management issues / George Tchobanoglous, Hilary Theisen, Samuel Vigil (S. A. Vigil & H. Theisen (eds.)), 1993.
Tsiliyannis, C. A., Hazardous waste incinerators under waste uncertainty: Balancing and throughput maximization via heat recuperation, Waste Management, vol. 33, No. 9, pp. 1800–1824, 2013.
Van der Sloot, H. A., Kosson, D. S., & Hjelmar, O., Characteristics, treatment and utilization of residues from municipal waste incineration, Waste Management, vol. 21, No. 8, pp. 753–765, 2001.
Wang, Z., Zhou, G., Cheng, X., & Xiong, Y., Oxy-fuel combustion of heavy oil based on OH - PLIF technique, Journal of the Energy Institute, vol. 93, No. 6, pp. 2511–2525, 2020.
Wiles, C. C., Municipal solid waste combustion ash: State-of-the-knowledge, Journal of Hazardous Materials, vol. 47, No. 1, pp. 325–344, 1996.
Yagüe, A., Valls, S., Vázquez, E., & Kuchinow, V., Use of dry sludge from waste water treatment plants as an additive in prefabricated concrete brick, Materiales de Construccion, vol. 2002, No. 267, pp. 31–41, 2002.
何秀美,污泥與底灰資源化為透水磚之研究,國立臺灣大學,環境工程學研究所,碩士論文,2003。
劉厚伯,垃圾焚化飛灰產製鈣矽水合材料及氯鹽穩定化之探討,國立成功大學,環境工程學系,碩士論文,pp. 1–147,2019。
劉致中,我國製造業現況與趨勢-回顧2008展望2009-高分子產業,工研院產業評析,pp. 215–236,2009。
台灣中油股份有限公司,低硫燃料油之安全資料表,pp. 1–8,2020。
台灣經濟研究所,中華民國化學工業年鑑,pp. 1–338,1996。
吳岳澤,污泥灰渣全資源化水泥砂漿之研究,國立中央大學,環境工程研究所,碩士論文,2006。
周宜成,ABS塑膠廢棄物添加酵素及礦石粉對焚化廢氣PAHs減量之可行性探討,國立成功大學,環境工程學系,博士論文,2003。
尤浚達,2008年合成樹脂產業回顧與展望,工研院產業評析,pp. 1–13,2009。
張乃斌,垃圾焚化廠系統工程規劃與設計,新雅出版社,1998。
張怡雯 & 范振誠,2019年第四季及全年我國石化產業回顧與展望,工研院產業評析,2020。
施博仁,脫硫渣應用於高壓混凝土磚之研究,國立高雄應用科技大學,土木工程與防災科技研究所,碩士論文,2009。
李志萍,旋轉窯焚化爐操作特性及應用於處理事業廢棄物之研究,國立臺灣大學,生物產業機電工程學系,博士論文,2004。
林國權,2011年全球前三大之產業產品-TPE,工研院產業評析,2012。
林建中 & 周宗華,高分子材料,新文京開發出版有限公司,pp. 1–614,2002。
楊萬發,焚化灰渣管理對策,焚化灰渣處理技術研討會論文集,pp. 2- 1 ~ 2-5,1993。
福本勤,產業、都市、放射性廢棄物處理技術,共立出版株式會社,1998。
科技部能源科技策略小組,能源產品單位熱值表,2018。
經濟部工業局,行業製程減廢及污染防治技術-合成樹脂業介紹,環保技術輔導計畫,pp. 1–40,2004。
經濟部工業局,行業製程減廢及污染防治技術-塑膠製品業介紹,環保技術輔導計畫,pp. 1–32,2004。
經濟部技術處,1999-2000年產業技術白皮書,台灣經濟研究院,pp. 1–11,2000。
經濟部技術處,2018石化產業年鑑,台灣經濟研究院,pp. 1-1-7–24,2018。
經濟部統計處,塑橡膠原料製造業108年產值,2019。
胡紹華 & 蔡敏行,都市垃圾焚化底渣資源化處理之研究,鑛冶:中國鑛冶工程學會會刊, vol. 42,No. 4,pp. 83–96,1998。
蘇柏源,污泥灰與垃圾焚化底渣應用於砂漿性質之研究,國立屏東科技大學,土木工程系,碩士學位論文,pp. 1–135,2006。
行政院主計總處,100年產業關聯程度表(166部門),2011。
行政院環保署,廢棄物代碼表,2002。
行政院環保署,中小型廢棄物焚化爐戴奧辛管制及排放標準,2005。
行政院環保署,廢棄物輸出入管制判定參考手冊,2011。
行政院環保署,感應耦合電漿原子發射光譜法,2013。
行政院環保署,108年事業廢棄物申報量統計報告,2019。
行政院環保署,108年重點事業廢棄物產出及清理流向統計年報,2019。
謝主信,石化污泥熱解特性與衍生液態燃料之研究,輔英科技大學,環境工程與科學系,碩士論文,2008。
謝哲隆,油污泥熱處理資源化研究,國立臺灣大學,環境工程學研究所, 博士論文,2001。
謝錦松 & 黃正義,固體廢棄物處理,淑馨出版社,2001。
陳亭秀,熱塑性彈性體產業現況及發展趨勢,工研院產業評析,2003。
陳政緯,以爐溫操作條件探討大型焚化爐飛灰無害化之研究-實廠案例,國立臺北科技大學,環境工程與管理研究所,碩士論文,2005。
陳清南,焚化過程重金屬鉛、鎘、銅揮發特性之研究,國立臺灣大學,環境工程與科學系,博士論文,1998。
陳維宗,2014年ABS全球市場分析,工研院產業評析,2015。
黃兆龍,混凝土性質與行為,詹氏出版社,2007。