簡易檢索 / 詳目顯示

研究生: 林宏茂
Lin, Hung-Mao
論文名稱: 肥粒體基球墨鑄鐵熱循環誘發沿晶脆性破壞之探討
A Study on the Cyclic Heating Induced Intergranular Fracture of Ferritic Spheroidal Graphite Cast Irons
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 162
中文關鍵詞: 球墨鑄鐵熱循環沿晶脆性破壞共晶胞界區域
外文關鍵詞: Spheroidal Cast Iron, Cyclic Heating, Intergranula Fracture, Eutectic Cell Wall Region
相關次數: 點閱:88下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   肥粒體基球墨鑄鐵經常被應用在許多高溫結構件,常用於操作最高溫度為共析變態點附近的溫度範圍內,以及必須反覆承受加熱及急冷之狀態,甚至於熱循環後有可能承受外力負荷的狀態。此時,反覆且劇烈之溫度梯度作用,可能導致零件經熱循環後延伸率可能發生明顯地劣化而發生本論文所稱的熱循環誘發沿晶脆性破壞,降低熱循環時應用的可靠度。因此,探討肥粒體基球墨鑄鐵熱循環誘發沿晶脆性破壞發生的原因及其改善對策,有其重要性。
    為探討肥粒體基球墨鑄鐵熱循環誘發沿晶脆性破壞之最高加熱溫度效應,本實驗採用反覆加熱/冷卻之熱循環試驗,最高加熱溫度選擇共析變態溫度附近之溫度條件分別為650℃、700℃、750℃、800℃及850℃。實驗結果顯示最高加熱溫度變化對熱循環誘發沿晶脆性破壞有明顯效應,其共通顯示約在750℃溫度加熱時熱循環後延伸率有一最低值存在,而降低或提升最高溫度皆顯示可抑制熱循環誘發延性劣化的發生。主要理由包括在較低溫度之650℃時,因試片在熱循環過程中之溫度梯度較小,所誘發的熱應力及熱應變較小所致;而在較高溫加熱之800℃時則由於肥粒體晶粒有再結晶現象發生,因而抑制熱循環誘發沿晶脆性破壞之發生。此外,由於熱循環溫度850℃時,有明顯的麻田散鐵相變態發生,因此並無減緩延性劣化的發生,但有抑制誘發沿晶脆性破壞的效果。
      球墨鑄鐵在熔煉過程常使用含鎂之鐵-矽合金為球化劑,會形成含鎂的介在物。而利用電解腐蝕方法,可揭露含鎂介在物的分佈形態及聚集程度。由熱循環前後之電解腐蝕及拉伸實驗的結果顯示,聚集的介在物會促進熱循環誘發裂紋的成核,且有大量的塑性變形集中於共晶胞界區域附近,此將導致熱循環誘發沿晶脆性破壞的發生。此外,最後凝固區域附近晶界上的金屬鎂殘留與熱循環所造成晶界內部氧化,均對熱循環誘發裂紋的傳播有增長的效果,進而也對熱循環誘發沿晶脆性破壞的發生有促進的影響。
      介在物聚集程度受材料凝固履歷的影響,介在物的聚集程度隨著矽含量增加而增加,高矽含量的球墨鑄鐵,介在物的聚集程度以及變形阻抗皆較低矽試片高,熱循環誘發裂紋成核成長較容易,因此有明顯的熱循環誘發沿晶脆性破壞發生。特別是抗高溫氧化性較佳之高矽球墨鑄鐵試料隨著殘鎂量提高,其介在物聚集於共晶胞界區域之數量及金屬鎂殘留於晶界的程度均增加,對於熱循環誘發沿晶脆性破壞發生有促進的效果。此外,較快凝固速率的試料具有較多的共晶胞界,降低介在物的聚集程度及金屬鎂殘留於晶界的數量,熱循環誘發裂紋成核較不容易且傳播速率也較緩慢,可抑制熱循環誘發沿晶脆性破壞發生。而肥粒體基球墨鑄鐵中添加合金元素鉬,由於Mo2C於共晶胞界區域附近的生成及鉬元素的晶界強化效應,對於熱循環誘發裂紋的生成及傳播有減緩的效果,且也可抑制抑制熱循環誘發沿晶脆性破壞發生。
      另一方面,根據所有試片進行拉伸試驗之結果顯示高矽含量試料明顯的在400℃溫度拉伸時會產生沿晶脆性破壞,而且延伸率急遽劣化。與前述具有一致性的結果是提高殘鎂量對於400℃中溫脆性有促進作用,在拉伸破斷面上可觀察到許多含鎂的介在物聚集及金屬鎂殘留於晶界上,以及提高材料的凝固速率使微觀組織細化,因為含鎂的介在物的分散作用及晶界金屬鎂殘留的程度降低,均可抑制中溫脆性發生。而根據球墨鑄鐵400℃中溫脆性之發生與熱循環誘發沿晶脆性破壞間關係之檢討結果,可確認兩者之間具有密切關連性存在。經由本研究對肥粒體基球墨鑄鐵熱循環誘發沿晶脆性破壞的檢討,可理解本材料熱循環誘發沿晶脆性破壞發生原因以及防治方法,進而提高本材料於熱循環應用的信賴度。

     Ferritic spheroidal graphite (SG) cast iron is often used as a candidate alloy for structural components that operate at high temperatures and undergo repeated heating/cooling conditions, even the external load after cyclic heating. Under these circumstances, the components periodically operate at a high temperature ranging around AC1 of approximately 850℃. The thermal stress arising from a steep temperature gradient may largely which lead to cyclic heating induced cracking that causes ductility deterioration, which is called cyclic heating induced intergranular fracture in this dissertation, in these components after cyclic heating. The ductility deterioration thus caused reduces the application reliability of this material for cyclic heating. Therefore, it is vital to investigate and prevent the cyclic heating induced intergranular fracture of ferritic SG cast iron.
     The effect of the highest temperature on the cyclic heating induced intergranular fracture of ferritic SG cast iron was investigated during thermal cycling with a temperature range of 25℃ to AC1 (where the temperatures selected were respectively 650℃, 700℃, 750℃, 800℃ and 850℃). The susceptibility to cyclic heating induced intergranular fracture was most severe at the heating temperature of around 750℃. Further increasing or decreasing the heating temperature could prevent the cyclic heating induced ductility deterioration. The better resistance to cyclic heating induced intergranular fracture at the lower heating temperature of 650℃ was related to the smaller temperature gradient within the specimen during thermal cycling. On the other hand, recrystallization of ferrite grains could be observed after heating at the maximum temperature of 800℃. The occurrence of recrystallization could improve the resistance to cyclic heating induced intergranular fracture. In addition, when the temperature of thermal cycling was 850℃, there was a significant deterioration of elongation that resulted from the partial martensite phase transformation of the ferrite matrix.
     Eutectic cell wall regions where inclusion particles are clustered are present in the central region among graphite nodules. The inclusion particles are mainly MgO which are formed since the spheroidizer used in the casting process of SG cast iron contains magnesium, i.e., the Fe-45wt%Si-8wt%Mg alloy. The degree of inclusion particles clustered in the eutectic cell wall regions can be successfully revealed by electrochemical etching. The electrochemical evidences of the specimens before and after cyclic heating and tensile test results, show that the clustered inclusion can promote the nucleation of cyclic heating induced cracks and the cumulative concentration of thermally induced deformations around the eutectic cell wall regions, where completely intergranular brittle fracture occurs. Furthermore, the magnesium at the final solidificational region and the internal oxidation of grain boundaries can promote the propagation of cyclic heating induced cracks, therefore the occurrence of the cyclic heating induced intergranular fracture.
     The degree of inclusion clustering is affected by the soliification history of SG cast irons. The degree of MgO particles concentrationrises as the silicon content increases. Materials with a high silicon content have both higher degree of inclusion clustering and flow stress than those with a low silicon content. Hence, in the case of the former, thermally induced cracks nucleate easily and therefore cyclic heating induced intergranular fracture occurs. Furthermore, in the case of high-silicon SG cast iron that has a better resistance to oxidation, the count of inclusion clustering and the degree of metallic magnesium residues increase as the residual magnesium content rises. This promotes the cyclic heating induced intergranular fracture of high-silicon SG cast iron. In addition, refining microstructures by increasing solidification rate leads to a larger number of eutectic cell wall regions and hence a smaller degree of inclusion particle clustering. A high solidification rate also decreases the degree of the metallic magnesium residues on the grain boundaries of the material. Consequently, thermally induced cracks are hard to nucleate and the cyclic heating induced intergranular fracture is impeded. Since molybdenum is added in the ferritic SG cast iron, the strengthening effect of molybdenum on cell walls together with the formation of Mo2C in the eutectic cell wall regions can impede the formation and propagation of cyclic heating induced cracks and prevent the occurrence of the cyclic heating induced intergranular brittle fracture.
     On the other hand, according to the tensile testing results of high-silicon SG cast iron at 400℃, the intermediate-temperature intergranular embrittlement occurs and the ductility drops drastically. Furthermore, the ductility of high-silicon SG cast iron at 400℃ decrease as the residual magnesium content rises. The fractography indicates an intergranular fracture. Some MgO particles aggregate in the eutectic cell wall regions and metallic magnesium segregation can be detected. Refining of microstructures by iron-mold casting, which has the effect of reducing clustering of MgO particles, can eliminate the intermediate temperature intergranular embrittlement at 400℃. The abovementioned experimental results confirm that there is a close relation between the cyclic heating induced intergranular fracture and the intermediate temperature intergranular embrittlement in this material. Through this study that investigates the cyclic heating induced intergranular fracture of ferritic SG cast iron, the factors affecting the embrittlement behavior are clarified. It is also possible to prevent the occurrence of the embrittlement and improve the application reliability of the material for cyclic heating.

    總目錄 中文摘要...........................................................I 英文摘要.........................................................III 總目錄...........................................................VII 表目錄...........................................................XII 圖目錄..........................................................XIII 第一章 前言........................................................1 第二章 文獻回顧....................................................5 2-1 前言...........................................................5 2-1-1 肥粒體基球墨鑄鐵400℃拉伸脆性要因............................5 2-1-2 肥粒體基球墨鑄鐵750℃熱疲勞龜裂脆性要因......................6 2-2 肥粒體基球墨鑄鐵脆性破壞的影響要因.............................7 2-2-1 力學要因.....................................................7 2-2-2 冶金要因.....................................................8 2-3 球墨鑄鐵介在物及偏析元素分佈形態的解析........................10 2-4 材料經熱循環後導致機械性質改變之相關研究......................11 2-4-1熱循環導致的超塑性行為.......................................11 2-4-2熱循環誘發的脆性破壞.........................................12 2-5 鑄鐵熱循環誘發破壞之發生機制..................................13 第三章 高矽肥粒體基球墨鑄鐵熱循環誘發脆性破壞之最高加熱溫度效應...21 3-1前言...........................................................21 3-2 實驗方法......................................................21 3-3 實驗結果......................................................23 3-3-1 最高加熱溫度與熱循環誘發脆性破壞之關係......................23 3-3-2 經不同最高加熱溫度之熱循環試片微觀組織觀察..................24 3-3-3 沿晶破斷面觀察..............................................25 3-4討論...........................................................26 3-5 結論..........................................................29 第四章 肥粒體基球墨鑄鐵熱循環誘發脆性破壞之冶金要因探討...........48 4-1 矽含量對肥粒體基球墨鑄鐵熱循環誘發脆性破壞之影響..............48 4-1-1 前言........................................................48 4-1-2 實驗方法提要................................................49 4-1-3 實驗結果....................................................50 4-1-3-1 矽元素對介在物分佈形態的影響..............................50 4-1-3-2 熱循環後沿晶脆性之矽含量效應..............................50 4-1-4討論.........................................................52 4-1-5結論.........................................................55 4-2 肥粒體基球墨鑄鐵熱循環誘發脆性破壞之殘鎂量變化效應............73 4-2-1 前言........................................................73 4-2-2 實驗方法....................................................74 4-2-3 實驗結果....................................................75 4-2-3-1 共晶胞界區域之微觀組織觀察................................75 4-2-3-2 共晶胞界介在物對於熱循環誘發裂紋的起始與傳播路徑之影響....75 4-2-3-3 微觀組織對熱循環後機械性質劣化率之影響....................76 4-2-4討論.........................................................77 4-2-5 結論........................................................79 4-3 微觀組織細化對肥粒體基球墨鑄鐵熱循環誘發脆性破壞之影響........93 4-3-1 前言........................................................93 4-3-2 實驗方法....................................................93 4-3-3 實驗結果....................................................94 4-3-3-1凝固速率變化對共晶胞界形態的影響...........................94 4-3-3-2組織細化對熱循環誘發延性劣化的影響.........................95 4-3-3-2熱循環後之裂紋起始與傳播...................................95 4-3-4討論.........................................................96 4-3-5結論.........................................................98 4-4肥粒體基球墨鑄鐵熱循環誘發脆性破壞之鎂元素及鉬元素效應........112 4-4-1 前言.......................................................112 4-4-2 實驗方法提要...............................................112 4-4-3 實驗結果...................................................113 4-4-3-1 微觀組織觀察及解析.......................................113 4-4-3-2 合金元素鉬添加對熱循環誘發沿晶脆性破壞的影響.............114 4-4-3-3 裂紋及沿晶斷面的解析.....................................114 4-4-4討論........................................................115 4-4-5結論........................................................117 第五章 肥粒體基球墨鑄鐵熱循環誘發脆性破壞發生機制檢討............127 5-1 前言.........................................................127 5-2 肥粒體基球墨鑄鐵熱循環誘發脆性破壞之發生要因.................127 5-2-1 再結晶及相變態效應對熱循環誘發脆性破壞的影響...............127 5-2-2介在物分佈形態及組織細化對熱循環誘發脆性破壞的影響..........129 5-3中溫脆性與熱循環誘發脆性破壞的依存性 .........................131 5-4肥粒體基球墨鑄鐵熱循環誘發脆性破壞之改善方法..................133 第六章 總結論....................................................146 第七章 參考文獻..................................................148

    1.K. G. Davis, D. A. Brown, J. G. Magny and D. Hui, “Choice of Permanent Mold Materials for Iron Castings”, AFS Trans., vol. 97, pp. 85-104, 1989.
    2.H. Ueno, S. Sugimoto, Y. Awano and K. Nishino, “Development of Free Cutting Heat Resistant Cast Steel”, J. of Japan Found. Eng. Soci., vol. 71, no. 9, pp. 630-642, 1999.
    3.J. R. Drake, “Cast Irons for Future Diesel Engines”, Modern Casting, vol. 72, no. 5, pp. 46-47, 1982.
    4.J. F. Janowak, R. B. Gundlach, G. T. Eldis and K. Röhrig, “Technical Advances in Cast Iron Metallurgy”, Int. Cast Met. J., vol. 6, no. 4, pp. 28-42, 1981.
    5.W. Fairhurst and K. Röhrig, “High-Silicon Nodular Irons”, Foundry Trade J., vol. 146, pp. 657-681, 1979.
    6.K. Röhrig, “Thermal Fatigue of Gray and Ductile Irons”, AFS Trans., vol. 86, pp. 75-88, 1978.
    7.M. Takanezawa, Y. Tomota and Y. Kobayashi, “A New Heat Resistant Cast Iron for Thin Wall Exhaust Manifold”, ISIJ International, vol. 38, no.1, pp.106-108, 1998.
    8.Y. J. Park, R.B. Gundlach, R. G. Thomas and J.F. Janowak, “Thermal Fatigue Resistance of Gray and Compacted Graphite Irons”, AFS Trans., vol. 93, pp 415-422, 1985.
    9.M. C. Rukadikar and G. P. Reddy, “ Influence of Chemical Composition and Microstructure on Thermal Conductivity of Alloyed Pearlitic Flake Graphite Cast Irons”, J. of Mat. Sci., vol.21, pp.4403-4410.
    10.Y. J. Park, R.B. Gundlach and J.F. Janowak, “Effects of Molybdenum on Thermal Fatigue Resistance of Ductile and Compacted Graphite Irons”, AFS Trans., vol. 95, pp. 267-272, 1987.
    11.M.C. Rukadikar and G.P. Reddy, “Prediction of Flake Graphite Cast Irons Thermal Fatigue Life”, AFS Trans., vol. 95, pp. 217-226, 1987.
    12.M. C. Rukadikar and G.P. Reddy, “Elevated Temperature Strength and Modulus of Elasticity of Alloyed Pearlitic Flake Graphite Cast Irons”, AFS Trans., vol. 96, pp. 351-360, 1988.
    13.M. T. Todinov, “Mechanism for Formation of Residual Stresses from Quenching”, Model. Simul. Mater. Sci. Eng., vol. 6, pp. 273-291, 1998.
    14.M. T. Todinov, “Influence of Some Parameters on the Residual Stresses from Quenching”, Model. Simul. Mater. Sci. Eng., vol. 7, pp.25-41, 1999.
    15.H. Fredriksson, P. A. Sunnerkrantz and P. Ljubinkovic, “Relationship between Structure and Thermal Fatigue in Cast Iron”, Mater. Sci. Technol., vol. 4, pp. 222-226, 1988.
    16.J. F. Janowak, J.D. Crawford and K. Röhrig, “Ferritic Nodular Iron for Elevated Temperature Service”, Casting Engineering/Foundry World, vol. 14, pp. 32-41, 1982.
    17.F.T. Shiao, T.S. Lui and L.H. Chen, “Distribution of the Inclusion Particles in Ferritic Spheroidal Graphite Cast Iron”, Mater. Trans., JIM, vol. 39, no. 10, 1033-1039, 1998.
    18.F.T. Shiao, T.S. Lui, L.H. Chen and J. M. Song, “The Relationship between Inclusion Clustering and Embrittlement of Ferritic Spheroidal Graphite Cast Iron at Intermediate Low Temperatures”, Int. J. Cast Metals Res., vol. 14, pp. 137-145, 2001.
    19.C. P. Cheng, T. S. Lui, L. H. Chen, “Effect of Residual Magnesium Content on Thermal Fatigue Cracking Behavior of High-Silicon Spheroidal Graphite Cast Iron”, Metall. Trans. A., vol. 30A, no. 6, pp. 1549-1558, 1999.
    20.C. P. Cheng, T. S. Lui, L. H. Chen, “Effect of Heating Temperature and Magnesium Content on the Thermal Cyclic Failure Behaviour of Ductile Irons”, Mat. Sci. Technol., vol. 20, no. 2, pp. 243-250, 2004.
    21.A. P. von Rosenstiel, H. Bakkerus and H.B. Zeedijk, “Heterogeneous Nucleation of Spheroidal Graphite Iron”, Cast Metals Research J., vol. 2, no.1, pp. 14-16, 1966.
    22.M. H. Jacobs, T.J. Law, D.A. Melford and M.J. Stowell, “Basic Process Controlling the Nucleation of Graphite Nodules in Chill Cast Iron”, Metals Tech., vol. 1, no.11, pp. 490-500, 1974.
    23.M.H. Jacobs, T.J. Law, D.A. Melford and M.J. Stowell, “Identification of Heterogeneous Nuclei for Graphite Spheroids in Chill-cast Iron”, Metals Tech., vol. 3, no.3, pp. 98-105, 1976.
    24.B. Francis, “Heterogeneous Nuclei and Graphite Chemistry in Flake and Nodular Cast Iron”, Metall. Trans. A, vol. 10A, pp. 21-31, 1979.
    25.T. Skaland, O. Grong and T. Grong, “A Model for the Graphite Formation in Ductile Cast Iron: Part I. Inoculation Mechanisms”, Metall. Trans. A, vol. 24A, pp. 2321-2345, 1993.
    26.Y. Igarashi and S. Okada, “Nucleus of Spheroidal Graphite in Magnesium Treated Cast Iron”, J. of Japan Found. Eng. Soci., vol.70, no. 5, pp. 329-335, 1998.
    27.S. F. Chen, T. S. Lui and L. H. Chen, “The Role of Magnesium-Containing Spheroidizer and Counteraction of Mish Metals in the Intermediate Temperature Intergranular Embrittlement of Ferritic Nodular Iron”, Metall. Trans. A, vol. 25A, no. 10, pp. 2305-2309, 1994.
    28.M. Sofue, S. Okada and T. Sasaki, “High-Quality Ductile Cast Iron with Improved Fatigue Strength”, AFS Trans., vol. 78, pp. 173-182, 1970.
    29.M. Sofue, “Influence of Residual Magnesium on the Fatigue Strength of Spheroidal Graphite Cast Iron”, Imono, vol. 47, pp. 681-687, 1975.
    30.M. Sofue, “On the Fatigue Strength of Spheroidal Graphite Cast Iron in Relation to the Distribution of Inclusions”, Imono, vol. 48, pp. 29-35, 1976.
    31.A. Weronski, “Microstresses in the Process of Thermal Fatigue”, Thermal Fatigue of Metals, Marcel Dekker, Inc., New York, pp. 175-182, 1991.
    32.林陽豐,“肥粒體球狀石墨鑄鐵脆性破壞之力學效應研究”,國立成功大學博士論文,第二章,1985。
    33.Y. F. Lin, T. S. Lui and L. H. Chen, The Effect of Graphite Shape on the Tensile Deformation Behavior in Hot-Swaged and Hot-Rolled Ferrtic Spheroidal Graphite Cast Iron”, Int. J. Cast Metals Res., vol. 9, pp. 63-69, 1996.
    34.Y. F. Lin, T. S. Lui and L. H. Chen, “Study on the Relationship between Intermediate-Temperature Embrittlement and Triaxial Stress Induced by the Ellipsoidal Graphite in Hot-Rolled Ferrtic Spheroidal Graphite Cast Iron”, Metall. Trans. A, vol. 26A, pp. 1101-1106, 1995.
    35.S. F. Chen, T. S. Lui and L. H. Chen, “The Effect of Phosphorus Segregation on the Intermediate-Temperature Embrittlement of Ferritic Spheroidal Graphite Cast Iron”, Metall. Trans. A, vol. 25A, pp.557-561, 1994.
    36.S. F. Chen, T. S. Lui and L. H. Chen, “A Discussion on the Effect of Segregation on Intermediate Temperature Embrittlement of Ferritic Spheroidal Graphite Cast Iron”, Cast Metals, vol. 6, no. 4, pp. 199-203, 1994.
    37.S. F. Chen, C. S. Shieh, T. S. Lui and L. H. Chen, “On the Flow Instability Associated with Dynamic Strain Ageing of Ferritic Spheroidal Graphite Cast Iron”, Cast Metals, vol. 6, no. 1, pp. 29-35, 1994.
    38.O. Yanagisawa and T. S. Lui, “Influence of the Structure on the 673K Embrittlement of Ferritic Spheroidal Graphite Cast iron”, Mater. Trans. JIM, vol. 24, pp. 858-867, 1983.
    39.R. N. Wright and T. R. Farrell, “Elevated Temperature Brittleness of Ferritic Ductile Iron”, AFS Trans., vol. 93, pp.853-866, 1985.
    40.Y. Iwabuchi, I. Kobayashi and H. Narita, “Prevention of Elevated Temperature Brittleness in Ferritic Ductile Iron by Phosporus”, J. of Japan Found. Eng. Soci., vol. 69, pp. 304-308, 1997.
    41.C. G. Chao, T. S. Lui and M. H. Hon, “The Effect of Micrestructure of Ferritic Spheriodal Graphite Cast Iron on Intergranular Fracture at Intermediate Temperature”, Metall. Trans. A, vol.20A, pp.431-436, 1989.
    42.C. G. Chao, T. S. Lui and M. H. Hon, “The Effect of Triaxial Stress Field on Intermediate Temperature Embrittlement of Ferritic Spheriodal Graphite Cast Irons”, Metall. Trans. A, vol.19A, pp.1213-1219, 1988.
    43.T. Kobayashi, K. Nishino, Y. Kimoto, Y. Awano, Y. Hibino and H. Ueno, “673K Embrittlement of Ferritic Spheroidal Graphite Cast Iron by Magnesium”, J. of Japan Found. Eng. Soci., vol. 70, pp. 273-278, 1998.
    44.Y. Iwabuchi, I. Kobatashi, H. Narita and T. Takenouchi, “Low-Ductility Intergranular Fracture of Ferritic Ductile Cast Iron at Elevated Temperature”, J. of Japan Found. Eng. Soci., vol. 68, pp. 271-278, 1996.
    45.M. Takanezawa, Y. Kobayashi and Y. Tomota, “Fracture Mechanism and Suppression Method of 673K Embrittlement in Speroidal Graphite Cast Irons”, J. of Japan Found. Eng. Soci., vol. 69, pp. 41-48, 1997.
    46.O. Yanagisawa, H. Ishii, K. Matsugi and T. Hatayama, “673K Embrittlement of Ferritic Spheroidal Graphite Cast Iron with Low Residual Magnesium Content”, J. of Japan Found. Eng. Soci., vol. 72, pp. 604-609, 2000.
    47.C. P. Cheng, T. S. Lui and L. H. Chen, “A Study of the 500-900℃ Tensile Deformation Behaviour of Spheroidal Graphite Cast Iron”, Cast Metals, vol. 8, no. 4, pp. 211-216, 1995.
    48.C. P. Cheng, S. M. Chen, T. S. Lui and L. H. Chen, “High Temperature Tensile Deformation and Thermal Cracking of Ferritic Spheroidal Graphite Cast Iron”, Metall. Trans. A., vol. 28A, pp. 325-333, 1997.
    49.程金保,“肥粒體基球墨鑄鐵共析變態溫度附近以下之熱疲勞龜裂性質探討”, 國立成功大學博士論文,第七章,1999。
    50.G. L. Rivera, R. E. Boeri and J. A. Sikora, Revealing the Solidification Structure of Nodular Iron”, Cast Metals, vol. 8, pp.1-5, 1995.
    51.D. Argo and J. E. Gruzleski, “Structure Transitions in Directionally Solidified Graphitic Cast irons”, Mat. Sci. Technol., vol. 2, pp. 1019-1013, 1986.
    52.S. Chang, D. Shangguan and D. M. Stefanescu, “Modeling of the Liquid/Solid and the Euctectoid Phase Transformation in Sphereoidal Graphite Cast iron”, Metall. Trans. A, vol. 23A, pp. 1333-1344, 1992.
    53.J. F. Knott, “Fundamental of Fracture Mechanics”, Butterworth & Co. Ltd., London, pp.27-29, 1973.
    54.G. C. Sih, “ Stress Analysis of Notch Problems”, Noordhoff International Publishing Alphen Aan Den Rijn, Netherlands, Chapt. 2, 1978.
    55.S. A. Meguid, “ Engineering Fracture Mechanics”, John Wiley & Sons Ltd., New York, Chapt. 1, 1979.
    56.H. Igaki, K. Ikeda and T. Ozawa, “The Yield Condition for Nodular Cast Iron Subjected to Triaxial Stress”, Trans. Japan Soc. of Mech. Eng., vol. 44, pp. 806-814, 1978.
    57.O. Yanagisawa and T. S. Lui, “Effect of Carbon Content and Ferrite Grain Size on the Tensile Flow Stress of Ferritic Spheroidal Graphite Cast Iron”, Metall. Trans. A, vol. 16A, pp. 667-673, 1985.
    58.N. N. Davidenkov and N. I. Spiridonova, Proc. ASTM, vol. 46, pp.1147, 1946.
    59.P. W. Bridgman, “Study in Large Plastic Flow and Fracture”, McGraw-Hill Book Co., London, pp.9-37, 1952.
    60.I. L. Mogford, I. L. Brown and D. Hull, “Fracture of Nodular Cast iron”, Iron Steel Inst J., vol.205, pp.729-732, 1967.
    61.R. C. Voigt and L. M. Eldoky, “Crack Initiation and Propagation in Quenched and Tempered Ductile Cast iron”, AFS Trans., vol. 94, pp.631-636, 1986.
    62.C. Pichard, J. Rieu and C. Goux, “The Influence of Oxygen and Sulfur on the Intergranular Brittleness of Iron”, Metall. Trans. A, vol. 7A, pp.1811-1815, 1976.
    63.D. Bika, J. A. Pfaendtner, Menyhard and C. J. McMahon Jr., “Sulfur-induced Dynamic Embrittlement in a Low Alloy Steel”, Acta Metall. Mat., vol. 43, no. 5, pp. 1895-1908, 1995.
    64.D. Y. Lee, E. V. Barrera, J. P. Stark and H. L. Marcus, “The Influence of Alloying Elements on Impurity Induced Grain Boundary Embrittlement”, Metall. Trans. A, vol. 15A, pp. 1415-1429, 1984.
    65.H. Hänsel and H. J. Grabke, “Grain Boundary Segregation of Phosphorus and Carbon in Ferritic Iron”, Scri. Metall., vol. 20, pp. 1641-1644, 1986.
    66.J. Kameda and C. J. McMahon Jr., “The Effects of Sb, Sn and P on the Strength of Grain Boundaries in a Ni-Cr Steel”, Metall. Trans. A, vol. 12A, pp. 31-37, 1981.
    67.J. R. Rellick and C. J. McMahon Jr., “Intergranular Embrittlement of Iron-Carbon Alloys by Impurities”, Metall. Trans. A, vol. 5A, pp. 2439-2450, 1974.
    68.R. A. Mulford, C. J. McMahon Jr., D. P. Pope and H. C. Feng, “Temperature Embrittlement of Ni-Cr Steels by Phosphorus”, Metall. Trans. A, vol. 7A, pp.1183-1195, 1976.
    69.R. D. K. Misra, “Grain Boundary Segregation of Phosphorus in Iron-Vanadium Alloys”, Acta Mater., vol. 44, pp.4367-4373, 1996.
    70.R. H. Bricknell, R. A. Mulford and D. A. Woodford, “The Role of Sulfur in Air Embrittlement of Nickel and Its Alloys”, Metall. Trans. A, vol. 13A, pp.1223-1132, 1982.
    71.T. Matsuyama and H. Stuo, “Equilibrium Grain Boundary Segregation of P in Fe-P Binary Alloys”, Trans. JIM, vol. 20, pp. 44-50, 1979.
    72.H. Erhart and H. J. Grabke, “Equilibrium Segregation of Phoshorus at Grain Boundaries of Fe-P, Fe-C-P, Fe-Cr-P and Fe-Cr-C-P Alloys”, Metal Sci., vol. 15, pp.401-408, 1981.
    73.C. L. Briant, “Grain Boundary Segregation of Sulfer in Iron”, Acta Metall., vol. 33, pp. 1241-1246, 1985.
    74.蕭富昌,“肥粒體基球墨鑄鐵中低溫脆性之探討”,國立成功大學博士論文,第八章,1998。
    75.R. W. Heine, “The Fe-C-Si Solidification Diagram for Cast Irons”, AFS Trans., vol. 94, pp. 391-402, 1986.
    76.Q. Hancheng and P. Xiaodong, “Study of the Formation of Spheroidal Grphite in Ancient Cast Iron in China”, AFS Trans., vol. 99, pp.415-420, 1991.
    77.Q. Lui, “Structure and Formation of Spheroidal Graphite in Cast Iron”, AFS Trans., vol. 101, pp.713-718.
    78.S. K. Yu, C. R. Loper Jr. and H. H. Cornell, “The Effect of Molybdenum, Copper and Nickel on the Microstructure, Hardness and Hardenability of Ductile Iron”, AFS Trans., vol. 94, pp. 557-576, 1986.
    79.G. L. Rivera, R. E. Boeri and J. A. Sikora, “Revealing the Solidification Structure of Nodular Iron”, Cast Metals, vol. 8, pp.1-5, 1995.
    80.D. Venugopalan and A. Algarsamy, “Effect of Alloy Additions on the Microstructure and Mechanical Properties of Commercial Ductile Iron”, AFS Trans., vol. 98, pp.395-400, 1990.
    81.E. N. Pan, M. S. Lou and C. R. Loper Jr., “Effects of Copper, Tin and Manganese on the Eutectoid Transformation of Graphite Cast irons”, AFS Trans., vol. 95, pp.819-840.
    82.C. Bak, M. Degois and J. M. Schissler, “Scanning Electron Microscope Examination of the Embrittlement of Ferritic Ductile Cast Iron”, AFS Trans., vol. 91, pp. 301-311, 1980.
    83.G. Jolley and G. N. Gilbert, “Segregation in Nodular Iron and its Influence on Mechanical Properties”, The British Foundryman, vol. 1, pp.79-92, 1967.
    84.G. Torga, R. Boeri and Weinberg, “Trace Elements in Nodular and Compacted Graphite in Cast iron”, Cast Metals, vol. 2, pp.169-174, 1989.
    85.N. K. Datta and N. N. Engel, “Electron Microprobe Study of the Distribution of Si, Cu, Ni, Mn, Mo and Cr in Ductile Iron, AFS Trans., vol. 87, pp. 431-436, 1976.
    86.P. C. Lui and C. R. Loper Jr., “Electron Microprobe Study of the Intercellular Compounds in Heavy Section Ductile Iron” AFS Trans., vol. 92, pp.131-140, 1981.
    87.P. C. Lui and C. R. Loper Jr., “Segregation of Certain Elements in Cast iron”, AFS Trans., vol. 95, pp.289-295, 1984.
    88.R. Boeri and F. Weinberg, “Microsegregation of Alloying Elements in Cast Iron”, Cast Metals, vol. 6, pp.153-158, 1993.
    89.R. Boeri and F. Weinberg, “Microsegregation in Ductile Iron”, AFS Trans., vol. 100, pp. 179-184, 1989.
    90.T. Sato and T. Ototani, “Potentiostatic Etching of Eutectic Cell in Cast Irons”, Imono, vol. 40, pp. 77-85, 1968.
    91.T. Sato and T. Ototani, “Formation of Lamellar and Spheroidal Graphite in Cast Iron in Relation to the Micro-Segregation of Silicon”, Imono, vol. 42, pp.30-36, 1970.
    92.T. Sato and T. Ototani, “Detection of Silicon Segregation in Cast Iron by Means of Potentiostatic Etching Technique”, Imono, vol. 42, pp. 30-36, 1970.
    93.M. Y. Wu, O. D. Sherby, “Superplasticity in Aluminum Base Metal Matrix Composites”, Scr. Metall. vol. 18, no. 8, pp. 773-776, 1984.
    94.S. H. Hong, O. D. Sherby, A. P. Divecha, S. D. Karmarkar, B. A. MacDonald, “Internal Stress Superplasticity in 2024 Al-SiC Whisker Reinforced Composites”, J.l of Compos. Mater., vol. 22, no. 2, pp. 102-123, 1988
    95.J. Pilling, “Superplasticity in Aluminum Base Metal Matrix Composites”, Scr. Metall. vol. 23, no. 8, pp. 1375-1380, 1989
    96.S. D. Karmarkar, A. P. Divecha, O. D. Sherby, “Influence of Anisotropic Distribution of Whiskers on the Superplastic Behavior of Aluminum in a Back-Extruded 6061 Al-20SiCw Composite”, Compos. Sci. Technol., vol. 35, no. 2, pp. 105-120. 1989
    97.S. Lee, D. H. Kim, J. H. Ryu, K. Shin, “Correlation of Microstructure and Thermal Fatigue Property of Three Work Rolls”, Metall. Trans. A. Vol. 28A, no. 12, pp. 2595-2608, 1997.
    98.J. Ginsztler, “The Path to Crack Initiation During Low Cycle Thermal Shock Fatigue”, Int. Pres. Ves. Pip., vol. 26, no. 3, pp. 181-196. 1986.
    99.S. B. Seo, D. S. Leem, J. H. Jun, C. S. Choi, “Effect of Thermal Cycling on Microstructures and Mechanical Properties of Lath and Lenticular Martensites in Fe-Ni Alloys”, ISIJ Inter., vol. 41, no. 4, pp. 350-355. 2001.
    100.H. S. Lee, J. S. Yeo and S. H. Hong, “The Fabrication Process and Mechanical Properties of SiC/Al-Si Metal Matrix Composites for Automobile Air-Conditioner Compressor Pistons”, J. Mat. Proc. Tech., vol. 113, pp.202-208, 2001.
    101.M. O. Nandy and S. Schmauder, “Simulation of Crack Propagation in Alumina Particle-Dispersed SiC Composites”, J. Euro. Ceramic Soc., vol. 19, pp.329-334, 1999.
    102.C. Badini and P. Fino, “Thermal Fatigue Behavior of 2014/Al2O3-SO2(Saffil Fiber) Composites Processed by Squeeze Casting”, Mater. Chem. Phys., vol. 64, pp.247-255, 2000.
    103.R.P. Skelton, “Introduction to Thermal Shock”, High Temp. Technol., vol. 8, no. 2, pp. 75-88, 1990.
    104.D. M. Stefanescu, “Cast Irons”, Metals Handbook, 10th ed., ASM International Handbook, Metals Park, OH, vol. 1, pp. 66-67, 1990.
    105.M.C. Rukadikar and G.P. Reddy, “Influence of Chemical Composition and Microstructure on Thermal Conductivity of Alloyed Pearlite Flake Graphite Cast Irons”, J. Mater. Sci., vol. 21, pp. 4403-4410, 1986.
    106.M.M. Shea, "Influence of Composition and Microstructure on Thermal Cracking of Gray Cast Iron", AFS Trans., vol. 86, pp. 23-30, 1978.
    107.S. C. Lee and S. C.Chen, “ A New Thermal Shock Equation for Cast Irons and Its Experimental Verification”, Chinese J. Mater. Sci., vol. 21, no. 4, pp.210-223, 1989.
    108.J.C. Radon, D.J. Burns, and P.P. Benham, “Push-Pull Low-Endurance Fatigue of Cast Irons and Steels”, JISI, pp.928-935, 1966.
    109.G.T. Hahn, P. N. Mincer and A. R. Rosenfield, “Fe-3Si Steel Etching Technique for Local Strain Measurement”, Exp. Mech., vol. 11, pp. 248-253, 1971.
    110.G.T. Hahn, P. N. Mincer and A. R. Rosenfield, “Local Yielding Attending Fatigue Crack Growth”, Metall. Trans. A, vol. 3, 1189-1202, 1972.
    111.K. Tanaka, M. Hojo and Y. Nakai, “Plastic Deformation Around a Fatigue Crack Near Threshold in 3% Si-Fe”, Mater. Sci. Eng., vol. 55, pp. 85-96, 1982.
    112.Y. Waku, T. Masumoto and T. Ogura, “Three-Dimensional Observation of Plastic Zones Formed Around Fatigue Cracks in an Fe-3% Si Alloy”, Trans. JIM, vol. 24, pp. 849-857, 1983.
    113.Y. Birol, “Analysis of Fatigue Crack Tip Plasticity in Fe-2.6Si”, Metallography, vol. 21, pp. 77-90, 1988.
    114.Y. Birol, “Plastic Deformation Around Fatigue Cracks”, J. of Mater. Sci., vol. 23, pp. 2079-2086, 1988.
    115.T. Kusakawa, X. Xu and S. Okimoto, “Effect of Oxygen in Cast Iron During Melting and Solidification Process”, Rep. Cast. Res. Lab. Waseda Univ., No. 38, pp. 33-39, 1988.
    116.G. Gottstein and S. Chen, “Recrystallization and Microstructure during High Temperature Fatigue”, International Conference on Recrystallization in Metallic Materials, The Minerals, Metals and materials Society, pp. 69-78, 1990.
    117.G. Glover and C. M. Sellars, “Recovery and Recrystallization During High Temperature Deformation of -Iron”, Metall. Trans. A, vol. 4, pp. 765-775.
    118.C. Ouchi and T. Okita, “Dynamic Recovery and Static Recrystallization of 1.8% Al Steel in Hot Deformation”, Trans. ISIJ, vol. 23, pp. 128-136, 1983.
    119.D. M. Stefanescu, “Classification and Basic Metallurgy of Cast Iron”, ASM Internatinal Metals Handbook, 10th ed., Metals Park, OH, vol. 1, pp. 1-11, 1990.
    120.S. I. Karsay, “Fundamentals of Metallurgy and Metallography of Ductile Irons”, Ductile Iron: Production Practices, American Foundrymen’s Society, Inc., Des Plaines, Illinois, pp. 24-38, 1985.
    121.R. B. Gundlach, C. R. Loper Jr and B. Morgensteren, “Composition of Ductile Irons”, Ductile Iron Handbook, American Foundrymen’s Society, Inc., Des Plaines, Illinois, pp. 66-109, 1992.
    122.A. Kagawa, Y. Shimamoto and T. Okamoto, “Formation of Gas Defects in Freezing Cast Irons”, in “ Physical Metallurgy of Cast Iron IV”, eds., G. Ohira , T. Kusakawa and E. Niyama, published by Mat. Res. Soc., Tokyo, Japan, pp.513-520, 1989.
    123.F. T. Shiao, T. S. Lui, L. H. Chen and S. F. Chen, “Eutectic Cell Wall Morphology and Tensile Embrittlement in Ferritic Spheroidal Graphite Cast Iron”, Metal. Trans. A., vol. 30A, no. 7, pp. 1775-1784, 1999.
    124.J. S. Park, T. K. Jhee, Y. P. Lee, J. H. Hong, “Effect of Magnesium on the Interface Segregation of Commercial Cast Iron”, Journal of the Korean Institute of Metals and Materials, vol. 31, no. 8, pp. 1077-1086, 1993.
    125.D. M. Stefanescu, “Properties and Selection: Irons, Steel and High Performance Alloys”, ASM International Metals Handbook, 10th ed., Metals Park, OH, vol. 1, pp.64, 1990.
    126.A. Kawasaki, C. H. Yeh, R. Watanabe, “Mechanism of Thermal Shock Crack Extension in Metal/Ceramic Sintered Functionally Graded Materials”, Journal of the Japan Society of Powder and Powder Metallurgy, vol. 43, no. 3, pp. 295-299, 1996.
    127.J. R. Davis, “Metallurgy and Properties of High-Alloy Graphitic Irons”, Cast Iron, ASM International Handbook, Materials Park, OH, pp.123-130, 1996.
    128.M. P. Seah and E. D. Hondros, “Grain Boundary Segregation”, Proc. R. Soc. Lond. A., vol. 335, pp. 191-212, 1973.
    129.M. P. Seah, “Interface Adsorption, Embrittlement and Fracture in Metallurgy”, Surf. Sci., vol. 53, pp. 168-212, 1975.
    130.M. P. Seah, “Adsorption-Induced Interface Decohesion”, Acta Metall., vol. 28, pp.955-962, 1980.
    131.X. Yang, “Effect of Carbide on Thermal Fatigue Resistance of Medium Chromium Semi-Steel Hot-Deformed”, Special Steel, vol. 22, no. 1, pp. 22-24, 2001.
    132.C. M. Sellars and J.A. Whiteman, “Recrystallization and Grain Growth in Hot Rolling”, Metal Sci., pp. 187-194, 1979.
    133.W. Roberts, H. Bodén and B. Ahlblom, “Dynamic Recrystallization Kinetics”, Metal Sci., pp. 195-205, 1979.
    134.W. J. M. Tegart, “Dynamic Recrystallization an Historical Perspective”, Materials Science Forum, vol. 113-115, Trans. Tech. Publications, Switzerland, pp. 1-18, 1993.

    下載圖示 校內:2005-11-17公開
    校外:2005-11-17公開
    QR CODE