| 研究生: |
林忠禎 Lin, Zhong-Zhen |
|---|---|
| 論文名稱: |
STEAM教育玩具的設計要素對臺灣兒童創造力的影響——基於兒童機器人教育玩具的教學實踐研究 Influence of Design Elements of STEAM Educational Toys over Creativity of Children in TaiWan--on the Basis of Teaching Practice Research on Educating Robot Toys with Children |
| 指導教授: |
何俊亨
Ho, Chun-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | STEAM教育 、兒童機器人教育 、機器人玩具設計 、創造力測評 |
| 外文關鍵詞: | STEAM education, children robot education, robot toy design, creativity evaluation |
| 相關次數: | 點閱:123 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,STEAM兒童教育觀念逐漸深入人心, 因其主張在教育中將玩與學進行結合, 越來越多的兒童家長所關注的焦點也轉移到玩具的教育價值上。在此背景下,市場上湧現出了衆多和兒童STEAM教育相關的玩具產品,其中尤以機器人組裝程式設計的玩具尤爲受消費者歡迎。機器人教育玩具作為玩具和教育結合的新興產業,人們都認爲其對兒童的教育有幫助,但鮮有研究來探討其對兒童的教育價值爲何,因此本研究想著重探討機器人教育玩具的教育性設計因素對兒童的創造力的影響。
本研究以「陶倫斯創造思考測驗」(Torrance Test of Creative Thinking,TTCT )做為研究工具,對受測者進行實驗前和實驗後的創造力評測,兩組的兩次評測結果都各自進行了配對樣本T檢定分析,來檢驗這兩次陶倫斯創造思考測驗的五個評分向度的分數以及總分是否有顯著差異。正式實驗採準實驗對照法,設置實驗組與對照組來探究STEAM教育兒童機器人玩具的何種教育性因素會對兒童的創造力產生影響。實驗通過焦點團體法STEAM教育領域專家團隊先篩選出25個其認爲機器人教育玩具可以對兒童創造力產生影響的元素,隨後將這25個元素采用李克特量表法製作問卷發放給兒童家長們填寫,調查兒童家長們對這25項元素陳述的認同程度,篩選出認同程度最高的5項納入實驗自變項的考量。考量到學術研究的倫理,最後給對照組受測者提供參與完整教學實驗的選擇。
研究結果發現,在經過爲期一個月共6次STEAM機器人教育玩具的課程,兩組受試者創造力總分的前後測整體表現皆達顯著提升(p<.05),實驗組創造力提升程度優於對照組,説明STEAM機器人教學對於學生的創造力確實有影響,且本研究的五項自變項在STEAM機器人教學中對提升兒童創造力很重要。本研究之成果可以加深我們對於STEAM教育的理解,作為後續相關研究的參考,其也可以應用在STEAM教育機器人玩具設計實務中。
In recent years, the concept of children STEAM education has become increasingly popular among people. It advocates the combination of games and studies in education, so more and more parents have transferred their focus to the educational value of toys. In this context, many toys related to children's STEAM education have appeared in the market. Among them, toys designed with robot assembly program are especially popular among consumers. As an emerging industry that combines toys and education, educating robot toys are considered to be helpful for children's education. However, there are few studies exploring their educational value for children. Therefore, this study will focus on the impact of the designing factors of educating robot toys on children's creativity.
In this study, the Torrance Test of Creative Thinking (TTCT) is used as a research tool to evaluate the creativity of subjects before and after the experiment. Evaluation results of two groups are both analyzed by paired sample T-test to determine whether there are significant differences among and scores of the five dimensions of TTCT and the total score. The formal experiment adopts the experimental contrast method, and sets the experimental group and the control group to find out which educational factors of children STEAM educating robot toys will influence children's creativity. Through the focus group method, the expert team in the STEAM education field first screens out 25 elements that they think educating robot toys could affect children's creativity. Then the expert team asks parents to fill a questionnaire including 25 elements based on the Likert Scale, which can investigate the degree of parents' recognition on the statements of 25 elements. They consider the five most recognized elements as experimental independent variables. Considering the ethics of academic research, subjects in the control group are given the choice to participate in the whole teaching experiment.
The results show that after a month of six STEAM courses of robot educational toy, the total score of overall creativity performance in the pretest and the post-test of two groups has been significantly improved (p<.05), and the creativity of the experimental group was better than that of the control group, indicating that STEAM robot teaching has an impact on the creativity of students. The five independent variables of this study are important in improving children's creativity in STEAM robot teaching. The results of this study can deepen our understanding of STEAM education. As a reference for follow-up research, it can also be applied to STEAM robot educational toy design practice.
一、中文部分
王東敏. (2012). 小學數學教學中的歸納和演繹. 教育研究與評論: 小學教育教學, (8), 8-11.
王裕德, 陳元泰 & 曾鈴惠. (2012). 機器人問題導向程式設計課程對女高中學生學習程式設計影響之研究. 科學教育月刊.
毛連塭、郭有遹、陳龍安、林幸台.(2001).創造力研究.臺北市:心理.
毛連塭.(1989). 實施創造思考教育的參考架構.創造思考教育.第一期: 2-9.
中華民國教育部. (2002). 創造力教育白皮書. 臺北:教育部.
中華民國教育部. (2014).十二年國民基本教育課程綱要總綱. 取自 https://www.naer.edu.tw/ezfiles/0/1000/attach/87/pta_5320_2729842_56626.pdf .
余勝泉、胡翔. (2015). STEM 教育理念與跨學科整合模式. 開放教育研究, 4, 13-22.
李小濤, 高海燕, 鄒佳人 & 萬昆. (2016). “互聯網+” 背景下的 STEAM 教育到創客教育之變遷——從基於項目的學習到創新能力的培養. 遠端教育雜誌, 34(1), 28-36.
李德高. (1990). 創造心理學. 五南圖書出版公司.
李乙明. (2006). 陶倫斯創造思考測驗圖形版指導手冊. 臺北市: 心理.
林幸台. (1998). 創造智能. 載於國立台灣師範大學舉辦之 [多元智能與成功智能的理論] 資優教育教師專業智慧研討會論文集 (頁 55-62), 臺北市.
林幸台 & 潘素卿. ( 1985). 新版陶倫斯創造思考測驗編. 國立彰化師範大學輔導研究所.
林幸台,王木榮. ( 1994).威廉斯創造力測驗.台北:心理出版社有限公司.
林庭瑤. (2009). 國小學童樂高學習與創意發展歷程之研究. 臺東大學進修部教育行政碩士班 (夜間) 學位論文, 1-136.
周钰婕, 仲娇娇, 易放, 高依婷 & 张蕾. (2016). STEAM教育对外来务工人员子女创新能力的影响--基于电子积木课程的探索性研究. 软件导刊· 教育技术, (2016 年 09), 37-40.
赵慧臣 & 陆晓婷. (2016). 开展 STEAM 教育, 提高学生创新能力——访美国 STEAM 教育知名学者格雷特· 亚克门教授. 开放教育研究, 22(5), 4-10.
吳靜吉、高泉豐、王敬仁、丁興祥. (1981). 拓弄思語文創造思考測驗 (甲式): 指導及研究手冊. 遠流出版社.
吳靜吉、高泉豐、王敬仁、丁興祥. (1981). 拓弄思語文創造思考測驗 (乙式): 指導及研究手冊. 遠流出版社.
胡畔, 蔣家傅 & 陳子超. (2016). 我國中小學 STEAM 教育發展的現實問題與路徑選擇. 現代教育技術, 26(8), 22-27.
胡畔, 蔣家傅 & 陳子超. (2015). 我國 STEAM 教育發展的現實困難與對策. 中國資訊技術教育, (9), 46-47.
施能木. (2009). 樂高組件對國小學童學習生活科技課程 [簡單機械] 單元之影響研究. 生活科技教育月刊.
高健、 楊幼蘭. (1998). 即興創意. 時報文化公司.
陶西平. (2016). 學生發展核心素養與課程改革. 創新人才教育, (4), 27-32.
陳英豪、毛連塭 & 王美蘭. (1977). 陶氏創造性思考測驗(圖形部分).國立高雄師範大學教育學系.
陳英豪、吳裕益. ( 1981) .修訂賓州創造傾向量表.高雄:復文.
陳龍安. (1986). 陶倫思圖形創造思考測驗 (乙式). 臺北市: 臺北市立師範學院.
陳龍安. (1984). 創造思考教學模式的建立與驗證 (Doctoral dissertation, 國立臺灣師範大學教育研究所博士論文).
陳龍安. (1984). 創造思考教學的模式. 教師研究專輯, 頁, 1-1
許財得. (2012). 應用問題本位的電腦樂高教學發展小學生的自我導向學習技能之個案研究. 中原大學教育研究所學位論文, 1-200.
國家自然科學基金委員會. (2017). 2018年度国家自然科学基金项目指南. 科学出版社.
商業週刊. (2005,12月). 思考、深思考. 臺北:商周.
曾惠青. (2006). 新式多元智能藝術教學法. 臺北市:藝術家出版社.
傅騫 & 王辭曉. (2014). 當創客遇上 STEAM 教育. 現代教育技術, 10, 37-42.
賀惠玲. (1992). 幼兒玩具的涵義-重要性與價值.
張春興. (1994). 教育心理學─ 三化取向的理論與實踐, 東華書局, 台北.
張玉成. (1983). 教師發問技巧及其對學生創造思考能力影響之研究. 台北: 教育部教育計畫小組.
張穎. (2012). 對兒童玩具的現狀研究 (Master's thesis, 上海師範大學).
童衛芳. (2016). 創客教育與 STEAM 教育的融合與創新. 吉林教育: 綜合, (29), 156.
楊玉佩. (2016). 小學 STEAM 教育的實踐與思考. 創新人才教育, (2016 年 03), 71-75.
楊現民 & 李冀紅. (2015). 創客教育的價值潜能及其爭議. 現代遠程教育研究.
楊孟麗, & 謝水南. (2003). 教育研究法: 研究設計實務. 臺北市: 心理.
董奇. (1995). 兒童創造力發展心理. 台北: 五南.
董奇. (1985). E· P· 托兰斯的创造力研究工作. 心理发展与教育, 1, 40-42.
董奇. (1985). 西方关于儿童创造力发展研究综述. 应用心理学, (1), 15-18.
詹秀美, & 吳武典. (2007). 新編問題解決測驗. 臺北市:心理.
劉英茂. (1974). 托浪斯創造性思考測驗: 語文甲式指導手冊. 台北: 中國行為科學社.
樊綺 & 謝作如. (2013). Scratch 第二季: STEAM 第一季——“雖然很困難, 但我們都在努力”——“第一屆中小學 STEAM 教育創新論壇” 的共識. 中國資訊技術教育, (10), 4-8.
鮑亮. (2011). 現代兒童玩具設計研究 (Doctoral dissertation, 上海: 上海交通大學).
樸美善. (2014). 試論 STEAM 教育中創造性思維的培養. 美術教育研究, (11), 134-135.
二、外文部分
Ancona, D. G. (1990). Outward bound: strategic for team survival in an organization. Academy of Management journal, 33(2), 334-365.
Association for Experiential Education. (1995). AEE definition of experiential education. The AEE Horizon., 15(1), 21.
Ball, O. E., & Torrance, E. P. (1984). Torrance tests of creative thinking streamlined scoring workbook, figural A. Scholastic Testing Service.
Boud, D., & Miller, N. (Eds.). (1996). Working with experience: Animating learning. Psychology Press.
Brooks, J., & Weinraub, M. (1976). A history of infant intelligence testing. In Origins of intelligence (pp. 19-58). Springer, Boston, MA.
Dewey, J. (1938). Experiential and education. New York: Collier.
Feldhusen, J. F., & Treffinger, D. J. (1985). Creative thinking and problem solving in gifted education. Kendall/Hunt Publishing Company.
Feldhusen, J. F., & Treffinger, D. J. (1985). Creative thinking and problem solving in gifted education. Kendall/Hunt Publishing Company.
Frey, C. B., & Osborne, M. A. (2017). The future of employment: how susceptible are jobs to computerisation?. Technological forecasting and social change, 114, 254-280.
Gardiner, H. (1995). Leading minds.
Getzels, J. W., & Jackson, P. W. (1958). The meaning of'giftedness': An examination of an expanding concept. The Phi Delta Kappan, 40(2), 75-77.
Guilford, J. P. (1956). The structure of intellect. Psychological bulletin, 53(4), 267.
Guilford, J. P. (1967). The nature of human intelligence.
Guilford, J. P. (1977). Way Behond the IQ: Guide to Improving Intelligence and Creativity. Creative Education Foundation.
IFR .(2015).World Robotics News 2014. Retrieved from http://www.worldrobotics.org/index. php?id=home&news_id=281
Jarvis, P., Griffin, C., Holford, J., Merricks, L., & Tosey, P. (1998). Why lifelong learning is not a policy. The Times Higher Education Supplement, 16.
Jackson, L., & Caffarella . R. S. (Eds.). (1994). Experiential learning: A new approach. New directions for adult and continuing education, 62. SF: Jossey-Bass.
Park, N., & Ko, Y. (2012). Computer Education's Teaching-Learning Methods Using Educational Programming Language Based on STEAM Education. NPC, 7513, 320-327.
Parnes, S. J. (1967). Creative behavior guidebook. Scribner.
Peppler, K. (2013). STEAM-powered computing education: Using e-textiles to integrate the arts and STEM. Computer, 1.
Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education: innovations and research, 5(3).
Taylor, C. W. (1988). Various approaches to and definitions of creativity. The nature of creativity, 99-121.
Terman, L. M. (1921). Intelligence and its measurement: A symposium--II. Journal of Educational Psychology, 12(3), 127.
Terman, L. M., & Oden, M. H. (1947). The gifted child grows up: Twenty-five years' follow-up of a superior group.
Terman, L. M. (1960). Genetic Studies of Genius...: The gifted group at mid-life; thirty-five years' follow-up of the superior child, by LM Terman and MH Oden (Vol. 5). Stanford University Press.
Tharp, R. G.(1999). Effective teaching: How the standards com to be. Effective teaching document series. (No. 1). Santa Cruz: Center for Research on Education, Diversity and Excellence, University of California.
Torrance, E. P. (1960). Eight partial replications of the Getzels-Jackson study. Research Memorandum BER-60, 15.
Yakman, G. (2010). What is the point of STE@ M?–A Brief Overview. Steam: A Framework for Teaching Across the Disciplines. STEAM Education, 7.
Yakman, G. (2008, March). STEAM education: An overview of creating a model of integrative education. In Pupils' Attitudes Towards Technology (PATT-19) Conference: Research on Technology, Innovation, Design & Engineering Teaching, Salt Lake City, Utah, USA.
校內:2022-12-31公開