簡易檢索 / 詳目顯示

研究生: 張智銘
Chang, Chih-Ming
論文名稱: 高壓丙烷火焰預分解雷射激發螢光之氫氧基定量量測
QUANTITATIVE MEASUREMENT OF OH CONCENTRATION WITH LASER-INDUCED PREDISSOCIATIVE FLUORESCENCE IN HIGH-PRESSURE PROPANE FLAMES
指導教授: 袁曉峰
Yuan, Hsiao-Feng T.
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 273
中文關鍵詞: 燃燒反應機構氫氧基定量量測火焰溫度燃燒熱電偶火焰模擬預分解雷射激發螢光預混平板火焰螢光冷卻速率丙烷
外文關鍵詞: LIPF, fluorescence, quenching rate, OH, flame simulation, combustion mechanism, quantitative measurement, flame temperature, propane, combustion, thermocouple, premixed flat flame
相關次數: 點閱:116下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    論文題目(中文)﹕高壓丙烷火焰預分解雷射激發螢光之氫氧基定量量測
    論文題目(英文)﹕QUANTITATIVE MEASUREMENT OF OH
    CONCENTRATION WITH LASER-INDUCED PREDISSOCIATIVE
    FLUORESCENCE IN HIGH-PRESSURE PROPANE FLAMES

    研究生﹕張智銘
    指導教授﹕袁曉峰

    燃燒是一快速之化學反應,過程會釋放出燃燒熱而所伴隨的卻是一些對環境以及人體健康皆有傷害的污染物質。一般相信丙烷是分子結構較簡單卻又具有常用燃油燃燒反應特徵的燃料。以反應機構模擬而言,一個經過實驗分析及驗證的丙烷燃燒反應機構必定會對更複雜的相關燃油燃燒反應分析具有莫大的幫助,然而燃燒實驗觀測數據的缺乏卻是個不爭的事實;因此本研究即對丙烷平板火焰於油氣當量比介於0.7到1.3之範圍,針對一、三及五大氣壓環境下進行火焰溫度與氫氧基之量測,所提供之定量實驗結果將可進行丙烷燃燒反應機構的驗證及分析。

    火焰溫度分佈於反應機構模擬分析上扮演著極重要的角色,尤其對侷限於平焰爐面附近的燃燒反應區計算模擬而言更形關鍵。本實驗利用R-type的熱電偶搭配上輔助定位的光學觀測系統,而能將觀測點延伸至平焰爐面,並以代表反應區的最高溫處為依據進行高空間解析度的量測。此量測結果利用初步的火焰模擬進行Nu參數的估計以進行熱輻射效應之修正,其總體的溫度量測不確定性小於±12 K。

    另外,本論文利用高壓丙烷/空氣預混平板火焰,進行火焰中預分解雷射激發螢光之氫氧基(OH-LIPF)定量分析研究。氫氧基分子經由氟化氪準分子雷射從X2Π(v" = 0)激發至A2Σ+(v' = 3),觀察(3,2)的螢光光譜。在後焰區域中以氫氧基螢光強度對火焰模擬計算的氫氧基濃度做校正,而火焰模擬計算結果是利用美國Sandia國家實驗室的火焰程式(flame code),配合GRI 3.0反應機構而得。經由對冷卻速率與Voigt profile的嚴謹計算,並且對室內空氣中之N2 Raman訊號做校正,氫氧基的濃度與螢光訊號之間的關係式可用下述方程式表示:
    [OH]=[(1.120±0.263)E+16].Sf.
    (A+Q+P)/(RN2.A.B.fB.Gv)

    OH-LIPF量測而得的校正曲線可以正確的描述出氫氧基的濃度變化,其最大誤差不超過±25%,此結果與目前文獻上有限的研究作比較具有相當好的一致性。

    本研究依據GRI 3.0反應機構為基礎,由文獻上廣泛的收集而建立一含碳數達C6的嘗試反應機構,以用於模擬分析火焰中氫氧基之分佈;此反應機構初步驗證發現,對於偏離貧油狀態(phi>=0.9)亦即是後焰區其計算模擬結果皆未能再現實驗的量測,而藉由所建立的嘗試反應機構進行測試分析,於富油環境下發現其主要原因是在一些所產生的大分子具有相當明顯之熱化學資料不確定性所導致。

    此論文提出一具有廣泛化的OH-LIPF校正常數,同時透過實驗量測進行丙烷火焰燃燒中OH濃度及溫度分佈曲線之定量分析,另外所建立之嘗試反應機構則提供丙烷或更高碳燃油燃燒研究之重要依據。

    Abstract

    QUANTITATIVE MEASUREMENT OF OH CONCENTRATION WITH LASER-INDUCED PREDISSOCIATIVE FLUORESCENCE
    IN HIGH-PRESSURE PROPANE FLAMES

    Student : Chih-Ming Chang
    Advisor : Hsiao-Feng T. Yuan

    ABSTRACT

    Combustion is a fast chemical reaction that liberates heat and some relevant pollutants. It is generally accepted that propane is the simplest hydrocarbon fuel that has reaction characteristics representative of many technical fuels. Therefore, from a modelling perspective, a propane combustion mechanism that has been verified against experimental data would be a valuable tool for analyzing and interpreting the combustion phenomena involving typical hydrocarbon fuels. However, the lack of precision measurements of propane flame is still an imperative need in the development of a combustion mechanism. In this work, we provide quantitative measurements of hydroxyl radicals (OH) and temperatures in premixed propane/air flat flames at equivalence ratios from 0.7 to 1.3 and pressures of 1, 3 and 5 bars.

    The accuracy and the spatial resolution of the measured temperatures is an important factor to the precision of the corresponding flame simulations, especially in the reaction zone near the burner surface. In this work, a carefully constructed thermocouple (R-type, 50 mm) assisted by an optical positioning system was used to identify the temperatures above the burner surface. These measured temperatures were corrected with the radiation heat loss in which the Nusellt (Nu) number was estimated by the preliminary flame simulations. The uncertainties of the final corrected temperatures were estimated to within ±12 K.

    A quantitative analysis of OH-LIPF in high-pressure (1 ~ 5 bars) premixed propane flames (phi = 0.7 ~ 1.3) was performed in this thesis research. OH molecules in the flames were excited from v" = 0 to v' = 3 in the A2Σ+<---X2Π system using a tunable KrF excimer laser where the fluorescence of OH (3, 2) band was observed. The OH fluorescence intensities in the post flame zone were calibrated against the OH concentrations calculated by the lean (phi = 0.7, 0.8) flame simulation using the Sandia flame code in conjunction with the GRI 3.0 mechanism. With careful evaluations of quenching rates and Voigt profiles, and after normalizing the OH fluorescence against N2 Raman signal, a linear relation was derived to be
    [OH]=[(1.120±0.263)E+16].Sf.
    (A+Q+P)/(RN2.A.B.fB.Gv)
    The uncertainty of this semi-theoretical correlation between the OH number density (#/cm3) and the fluorescence intensities was ±25%. These calibration results were compared to the limited data in the literature and showed good consistency.

    A comprehensive trial mechanism based on the GRI 3.0 mechanism and up to C6 oxidation reactions as found in the literature was carefully composed and tested against the measured OH distributions. Flame simulations were performed and showed that the mechanism still failed to predict the OH concentrations, even in the post flame zone for slightly richer propane flames (phi>= 0.9). An analysis determined that the major cause of the inadequacy of the flame simulations was the inaccuracy of the thermochemical data of the large molecules involved in rich flame oxidation reactions.

    In this work, a universal OH-LIPF calibration correlation was deduced, the quantitative OH concentration profiles as well as the temperature profiles of premixed propane/air flat flames were analyzed, and a trial mechanism up to C6 oxidation reactions was composed, the results of which can serve as important information for further studies of the chemical kinetics and the mechanisms of propane or higher hydrocarbon fuels combustion.

    CONTENTS Page 摘要..........................................................................i 簡述........................................................................iii ABSTRACT.....................................................................ix CONTENTS.....................................................................xi LIST OF TABLES..............................................................xiv LIST OF FIGURE..............................................................xvi NOMENCLATURE.................................................................xx CHAPTER I INTRODUCTION.........................................................1 1.1 Background...........................................................1 1.2 Laser Diagnostic Techniques..........................................3 1.3 OH Concentration Measurements........................................5 1.4 Measurements in High-Pressure Flames.................................7 1.5 Kinetics and Mechanism..............................................10 1.6 Literature Survey of Propane Reaction Mechanisms....................12 1.7 Motivations and Objectives..........................................22 1.8 Thesis Overview.....................................................23 II THEORY OF LASER-INDUCED FLUORESCENCE AND FLAME SIMULATION...........25 2.1 Background of LIF...................................................25 2.2 State-to-State Transfer Approach....................................26 2.3 Four Level Model....................................................28 2.4 OH Concentration Measurements.......................................32 2.5 Some Considerations on the use of OH-LIPF...........................35 2.5.1 VET Effects.........................................................35 2.5.2 RET Effects.........................................................37 2.5.3 Polarization of OH-LIPF.............................................38 2.5.4 Photobleaching and Photochemistry Phenomena.........................38 2.5.5 Collisional Quenching Effects and Rotational Level Dependence.......39 2.6 Flame Modeling......................................................40 2.7 GRI 3.0 Mechanism and Trial Reaction Mechanism......................43 III EXPERIMENTAL APPARATUS AND PROCEDURES...............................46 3.1 System Components...................................................46 3.2 Laser System and Lenses.............................................46 3.3 Fluorescence Detection..............................................48 3.4 High Pressure and Flat Flame Burner.................................49 3.5 Temperature Measurements by Thermocouple............................51 3.6 Operation Considerations............................................53 3.7 Chapter Summary.....................................................53 IV EXPERIMENTAL MEASUREMENTS AND CALIBRATIONS..........................55 4.1 Overview............................................................55 4.2 Flame Temperature Field Measurements................................56 4.3 OH Concentration Measurements.......................................58 4.4 Calibration.........................................................61 4.5 Einstein Absorption and Emission Coefficients.......................61 4.6 Boltzmann Fraction..................................................64 4.7 Voigt Profile.......................................................65 4.8 Quenching Rate......................................................67 4.9 Predissociation Rate................................................69 4.10 Calibration Constant................................................70 V RESULTS AND DISCUSSION..............................................72 5.1 Overview............................................................72 5.2 Flat Flame Conditions Settings......................................72 5.3 Thermocouple Temperature Measurement................................74 5.4 OH Concentration Measurements.......................................76 5.4.1 Premixed Propane/Air Equivalence Ratio Certification................76 5.4.2 Laser Energy Induced H2O OH-LIPF Interference.......................77 5.4.3 Quenching Rate Prediction...........................................79 5.5 Errors and Uncertainties............................................80 5.5.1 Uncertainty of Thermocouple Measurement.............................81 5.5.2 Uncertainty of Quantitative OH-LIPF Measurement.....................82 5.6 Quantitative Calibration Constant...................................89 5.6.1 Propane Flame Simulation Through the GRI 3.0 Mechanism..............90 5.6.2 Deduced Calibration Constant for Propane Flame......................91 5.6.3 Quantification of OH-LIPF Measurement Results.......................92 5.6.4 Comparison of The Result of Methane and Propane Flame Studies.......93 5.7 Reaction Mechanisms Validation......................................95 5.7.1 Reaction Mechanism Validation of Models.............................96 5.7.2 Reaction Mechanism Validation of Trial Model........................97 VI CONCLUSIONS AND FUTURE WORKS.......................................103 6.1 Conclusions........................................................103 6.2 Suggestions for Further Research...................................106 REFERENCES..................................................................109 APPENDIX A..................................................................124 APPENDIX B..................................................................159 APPENDIX C..................................................................165 APPENDIX D..................................................................171 APPENDIX E..................................................................175 APPENDIX F..................................................................179 APPENDIX G..................................................................190 TABLES......................................................................193 FIGURES.....................................................................224

    REFERENCES
    Alkemade, V., and Homann. K. H., "Formation of C6H6 isomers by recombination of propynyl in the system sodium vapour/ propynylhalide," Z. Phys. Chem. NF., Vol.161, p.19, 1989.
    Andresen, P., Bath, A., Gröger, W., Lülf, H. W., Meijer, G. and ter Meulen, J. J., "Laser-Induced Fluorescence with Tunable Excimer Lasers as a Possible Method for instantaneous Temperature Field Measurements at High Pressures: Checks with an Atmospheric Flame," Applied Optics, Vol.27, No.2, pp.365–378, 1988.
    Andresen, P., Meijer, G., Schlüter, H., Voges, H., Koch, A., Hentschel, W., Oppermann, W. and Rothe, E., "Fluorescence Imaging inside an Internal Combustion Engine using Tunable Excimer Lasers," Applied Optics, Vol.29, No.16, pp.2392–2404, 1990.
    Andresen, P., Schlüter, H., Wollf, D., Voges, H., Koch, A., Hentschel, W., Oppermann, W. and Rothe, E., "Identification and Imaging of OH (n²=0) and O2 (n²=6 or 7) in an Automobile Spark-Ignition Engine Using a Tunable KrF Excimer Laser," Applied Optics, Vol.31, No.36, pp.7684–7689, 1992.
    Anketell, J. and Pery-Thorne, A., "Oscillator Strengths in the 2S+–2PBand System of OH by the Hook Method," Proc. Roy. Soc. A., Vol.301, pp.343–353, 1967.
    Arnold, A., Braumer, A., Buschmann, A., Decker, M., Dinkelacker, F., Heitamann, T., Orth, A., Schafer, M., Sick, V. and Wolfrum, J., "2D-Diagnostics in Industrial Devices," Ber. Bunsenges. Phys. Chem., Vol.97, No.12, pp.1650–1661, 1993.
    Arnold, A., Bombach, R., Käppeli, B. and Schlegel, A., "Quantitative Measurements of OH Concentration fields by Two-Dimensional Laser-Induced Fluorescence," Appl. Phys. B, Vol.64, pp.579–583, 1997.
    Arrhenius, S., Z., Physik. Chemie, Vol.4, p.226, 1889.
    Banwell, C. N, Fundamentals of Molecular Spectroscopy, 3rd Edition, McGraw-Hill, London, 1983.
    Bartok, W., Engelman, V. S., Goldstein, R., and del Valle, E. G., A.I.Ch.E., Vol.126, p.30, 1972.
    Baulch, D. L., Cox A. M., Just T, Kerr J. A. Pilling M, Troe J, Walker R. W., Warnatz J., "Compilation of rate data on C1/C2 Species Oxidation," J. Phys. Chem. Ref. Data, Vol.21:3, 1991.
    Bauschlicher, C. W. and Langhoff, S. R., J. Chem. Phys., Vol.87, p.4665, 1987.
    Bechtel, J. H. and Teets, R. E., "Hydroxyl and its Concentration Profile in Methane-Air Flames," Applied Optics, Vol.18, No.24, pp.4138–4144, 1979.
    Becker, H., Arnold, A., Suntz, R., Monkhouse, P., Wolfrum, J., Maly, R., and Pfister, W., "Investigation of Flame Structure and Burning Behavior in an IC Engine Simulator by 2D-LIF of OH Radicals," Appl. Phys. B, Vol.50, pp.473-478, 1990a.
    Becker, H., Monkhouse, P., Wolfrum, J., Cant, R. S., Bray, K. N. C., Maly, R., Pfister, W., Stahl, G., and Warnatz, J., 23rd Symposium (International) on Combustion (The Combustion Institute, Pittsburgh), pp.817-823, 1990b.
    Benson, S. W., Thermochemical Kinetic, 2nd Ed., Wiley, New York, 1976.
    Bergano, N. S., Jaanimagi, P. A., and Salour, M. M., "Picosecond Laser-Spectroscopy Measurement of Hydroxyl Fluorescence Lifetime in Flames," Optics Letters, Vol.8, No.8, pp443-445, 1983.
    Borisov, A. A., Zamansky, V. M., Lissianski, V. V., Skachkov, G. I., and Troshin, L. Y., Progress in Astronautics and Aeronautics, Vol.114, p.124, 1988.
    Bowman, C.T., Hanson, R. K., Davidson, D.F., Gardiner, W. C., Jr., Lissiandki, V., Frenklach, M., Goldenberg, M., Smith, G. P., Golden, D. M., and Serauskas, R. V., Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Poster WIP-4-47, 1994.
    Bowman, C. T., Hanson, R. K., Gardiner Jr., W, C., Lissianski, V., Frenklach, M., Goldenberg, M., and Smith, G. P., GRI-Mech 2.11-An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion and NO Formation and Reburning, Topical Report, Gas Research Institute, Basic Research Group, March 1997.
    Bowman, C. T., Hanson, R. K., Davidson, D. F., Gardiner Jr., W. C., Lissianski, V., Smith, G. P., Golden, D. M., Frenklach, M., Wang, H., and Goldenberg, M., GRI Report, GRI-970020. Refer to the GRI-Mech homepage at http://www.me.berkeley.edu/gri_mech/ for information on GRI-Mech 3.0, 1999.
    Brokaw, R. S., and Jackson, J. L., "Effect of Temperature, Pressure and Composition on. Ignition Delays for Propane Flames," 5th. Symposim (International) on Combustion, Reihold, New York, p.91, 1955.
    Burcat, A., Lifshitz, A., Scheller, K., and Skinner, G. B., Thirteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p.745, 1971.
    Burcat, A., Fuel, Vol.54, p.87, 1975.
    Carter, C. D., King, G. B. and Laurendeau, N. M., "Quenching-Corrected Saturated Fluorescence Measurements of the Hydroxyl Radical in Laminar High-Pressure C2H6/O2/N2 Flames," Combust. Sci. and Tech., Vol.78, pp.247–264, 1991.
    Carter, C. D., King, G. B. and Laurendeau, N. M., "Saturated Fluorescence Measurements of the Hydroxyl Radical in Laminar High-Pressure C2H6/O2/N2 Flames," Applied Optics, Vol.31, No.10, pp.1511–1522, 1992.
    Cathonnet, M., Boettner, J. C., and James, H., "Experimental study and numerical modelling of high temperature oxidation of propane and n-butane," 18th Symposium (International) on Combustion, pp.903-913, 1981.
    Cattolica, R. J., "OH Rotational Temperature from Two-Line Laser-Excited Fluorescence," Applied Optics, Vol.20, No.7, pp.1156–1166, 1981.
    Cattolica, R. J., "OH Radical Nonequilibrium in Methane-Air Flat Flames," Combustion and Flame, Vol.44, pp.43–59, 1982.
    Cattolica, R. J., and Schefer, R. W., "Laser Fluorescence Measurements of the OH Concentration in a Combustion Boundary Layer," Combust. Sci. Technol., Vol.30, p.205, 1983.
    Chen, C. C., Effect of Gas Composition on Temperature Reconstruction Process Using Holographic Interferometry in Premixed Propane-Air flames, Ph. D. Thesis, The National Cheng Kung University, Taiwan, 1991.
    Cheng, C. K., A Study of Quantitative NO LIF in High-Pressure Methane Flames, Ph. D. Thesis, The National Cheng Kung University, Taiwan, 1998.
    Cheng, T. S., Wehrmeyer, J. A. and Pitz, R. W., "Simultaneous Temperature and Multi-Species Measurement in a Lifted Hydrogen Diffusion Flame by a KrF Excimer Laser," AIAA Paper, No.91–0181, 1991.
    Cheng, T. S., Wehrmeyer, J. A. and Pitz, R. W., "Simultaneous Temperature and Multispecies Measurement in a Lifted Hydrogen Diffusion Flame," Combust. Flame, Vol.91, pp.323–345, 1992.
    Cheng, T. S., Yuan, T., Chao, Y. C., Lu, C. C. and Wu, D. C., "Premixed Methane-Air Flame Spectra Measurements Using UV Raman Scattering," Combust. Sci. and Tech., Vol.135, pp.65–84, 1998.
    Chiang, C.-C., and Skinner, G.B., "Resonance Absorption Measurements of Atom Concentrations in Reacting Gas Mixtures 5. Pyrolysis of C3H8 and C3D8 Behind Shock Waves," Symp. Int. Combust. Proc., Vol.18, p.915, 1981.
    Cleveland, C. B., and Wiesenfeld, J. R., "Electronic Quenching of Highly Rotationally Excited Hydroxyl (A2Σ, n' = 0,1) by Water," Chem. Phys. Lett., Vol.144(5-6), pp.479-485, 1988.
    Copeland, R. A., Dyer, M. J. and Crosley, D. R., "Rotational-Level-Dependent Quenching of A2Σ+ OH and OD," J. Chem. Phys., Vol.82, No.9, pp.4022–4032, 1985.
    Copeland, R. A., Jeffries, J. B. and Corsley, D. R., Chem. Phys. Lett., Vol.138, p.425, 1987.
    Copeland, R. A., Wise, M. L. and Crosley, D. R., "Vibrational Energy Transfer and Quenching of OH (A2Σ+, n¢ = 1)," J. Phys. Chem., Vol.92, pp.5710–5715, 1988.
    Crosley, D. R. and Lengel, R. K., "Relative Transition Probabilities and the Electronic Transition Moment in the A–X System of OH," J. Quant. Spectrosc. Radiat. Transfer, Vol.15, pp.579–591, 1975.
    Crosley, D. R. and Smith, G. P., "Rotational Energy Transfer and LIF Temperature Measurements," Combust. Flame, Vol.44, pp.27–34, 1982.
    Crosley, D. R., "Semiquantitative Laser-Induced Fluorescence in Flames," Combust. Flame, Vol.78, pp.153–167, 1989a.
    Crosley, D. R., "Rotational and Translational Effects in Collisions of Electronically Excited Diatomic Hydrides," J. Phys. Chem., Vol.93, pp.6273–6282, 1989b.
    Dagaut, P., Ph.D. Thesis, The Pierre et Marie Curie University, Paris, 1986.
    Dagaut, P., Cathonnet. M., Boettner, J. C., and Gaillard, F., "Kinetic modeling of ethylene oxidation," Combust. Flame, Vol.71, No.3, pp.295-312, 1987a.
    Dagaut, P., Cathonnet. M., and Boettner, J. C., "Experimental study and kinetic modeling of propene oxidation in a jet-stirred flow reactor," J. Phys. Chem., Vol.92, No.3, pp. 661-671, 1987b.
    Dagaut, P., Cathonnet. M., Boettner, J. C., and Gaillard, F., "Kinetic modeling of propane oxidation," Combust. Sci. and Tech., Vol.56,pp.23-63, 1987c.
    Dagaut, P., Cathonnet. M., and Boettner, J. C., "Kinetic modeling of propane oxidation and pyrolysis," Int. J. Chem. Kinet., Vol.24, pp.813-837, 1992.
    Daily, J. W., "Pulsed Resonance Spectroscopy Applied to Turbulent Combustion Flows," Applied Optics, Vol.15, No.4, pp.955–960, 1976.
    Daily, J. W., "Saturated Effects in Laser Induced Fluorescence Spectroscopy," Applied Optics, Vol.16, No.3, pp.568–571, 1977a.
    Daily, J. W., "Use of Rate Equations to Describe Laser Excitation in Flames," Applied Optics, Vol.16, No.8, pp.2322–2327, 1977b.
    Daily, J. W., "Laser-Induced Fluorescence Spectroscopy in Flames," Prog. Energy Combust. Sci., Vol.23, pp.133–199, 1997.
    Davis, S. G., Law, C. K., and Wang, H., "Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames," Combust. Flame, Vol.119, pp.375-399, 1999.
    Desgroux, P., Domingues, E. and Cottereau, M. J., "Measurements of OH Concentration in Flames at High Pressure by Two-Optical Path Laser-Induced Fluorescence," Applied Optics, Vol.31, No.15, pp.2831–2838, 1992.
    Dewar, M. J. S., and Thiel, W., J. Am. Chem. Soc., Vol.99, p.4899, 1977a.
    Dewar, M. J. S., and Thiel, W., J. Am. Chem. Soc., Vol.99, p.4907, 1977b.
    Dewar, M. J. S., Zoebisch, E. G. Healy, F., and Stewart, J. P., J. Am. Chem. Soc., Vol.107, p. 3902, 1985.
    Dieke, G. H., and Crosswhite, H. J., J. Quant. Spectrosc. Radiat. Transfer, Vol.2, p.97, 1962.
    Dixon-Lewis, G. Proc. Roy. Soc. London, Vol.317A, p.235, 1970.
    Dixon-Lewis, G. In Combustion Chemistry, W.C. Gardiner, Jr. (Ed.), Springer-Verlag, New York, Chapter 2, 1984.
    Drake, M. C., Ratclffe, J. W., Blint, R. J., Carter, A. D., and Laurendeau, N. M., "Measurements and Modeling of Flame-Front NO Formation and Superequilibrium Radical Concentrations in Laminar High-Pressure Premixed Flames," Twenty-Third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp.387–395, 1990.
    Drake, M. C. and Blint, R. J., Combst. Sci. Technol., Vol.75, p.261, 1991.
    Dreier, T., Dreizler, A. and Wolfrum, J., Appl. Phys. B, Vol.55, p.381, 1992.
    Dykstra, C. E., Augspurger, J. D., Kirtman, B. and Malik, D. J., In Reviews in Computational Chemistry, K.B Lipkowitz and D.B. Boyd (Eds.), VCH publishers, New York, p.83, 1990.
    Eckbreth, A. C., Laser Diagnostics for Combustion Temperature and Species, 2nd Edition, Gordon and Breach Science Publishers SA, 1996.
    Edwards, T., Weaver, D. P., and Eampbell, D. H., "Laser-induced fluorescence in high pressure solid propellant flames," Appl. Opt., Vol.26, pp.3496-3509, 1987.
    Egolfopoulos, F.N., Zhu, D.L., and Law C.K., Twenty-Third symposium (International) on combustion, The combustion Institute, pp.471-478, 1990.
    Feller, D. and Davidson, R. R., In Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd (Eds.), VCH publishers, New York, p.1, 1990.
    Frenklach, M., and Bornside, S. E., "Shock-initiated ignition in methane-propane mixtures," Combust. Flame, Vol.56, pp.1-27, 1984.
    Frenklach, M., Wang, H.,, and Rabinowitz, M. J., Prog. Energy Combust. Sci, Vol.18, p.47, 1992.
    Frenklach, M., Wang, H., Bowman, C. T., Hanson, R. K., Smith, G. P., Golden, D. M., Gardiner, W. C., and Lissianski, V., Twenty-Fifth Symposium (International) on Combustion, Abstracts of work-in-Pittsburgh, p.212, 1994.
    Frenklach, M., Wang, H., Goldenberg, M., Smith, G. P.,Golden, D. M., Bowman, C. T., Hanson, R. K., Gardiner, W. C., and Lissianski, V., GRI-Mech --- An Optimized Chenmical Chemical Reaction Mechanism for Methane Combustion, Topical Report, Gas Research Institute, Basic Research Group, November 1995.
    Gardiner, W.C., Jr., "The chemistry of Flames," Sicentific American, Vol.246, No.2, p.86, 1982.
    Garland, N. L. and Crosley, D. R., "On the Collisional Quenching of Electronically Excited OH, NH and CH in Flames," 21th Symposium (Int.) on Combustion, The Combustion Institute, pp.1693–1702, 1986.
    German, K. R., "Collision and Quenching Cross Sections in the A2Σ+ State of OH and OD, " J. Chem. Phys., Vol.64, No.10, pp.4065–4068, 1976.
    Glarborg, P., Kee, R. J., Grcar, J. F., and Miller, J. A., A Fortran Program for Modeling Well-Stirred Reactors, Sandia National Laboratories Report, No.SAND86-8209, 1986.
    Glarborg, P., Kristensen, P. G., Jensen, S. H., and Dam-Johansen, K., "Flow reactor study of HNCO oxidation chemistry," Combust. Flame, Vol.98, No.2, pp.241-258, 1994.
    Goldenberg, M., and Smith, G. P., GRI-Mech 2.11-An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion and NO Formation and Reburning, Topical Report, Gas Research Institute, Basic Research Group, March 1997.
    Goldsmith, J. E. M., Applied Optics, Vol.26, p.3566, 1987.
    Gray, J. A. and Farrow, R. L., "Predissociation Lifetimes of OH A2Σ+ (n¢=3) Obtained from Optical-Optical Double-Resonance Linewidth Measurements," J. Chem. Phys., Vol.95, No.10, pp.7054–7060, 1991.
    Gray, J. A., and Westbrook, C. K., International Journal of Chemical Kinetics, Vol.26, pp.757-770, 1994.
    Grinstead, J. H., Laufer, G., Krauss, R. H. and McDaniel, J. C., Jr., "Calibration Source for OH Laser-Induced Fluorescence-Density Measurements with Thermally Dissociated H2O in Atmospheric Air," Applied Optics, Vol.33, No.6, pp.1115–1119, 1994.
    Hanson, R. K., Combustion Diagnostics: Planar Imaging Techniques, Twenty-First Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp.1677-1691, 1986.
    Harrington, J. E., Smith, G. P., Berg, P. A., Nobel, A. R., Jeffries, J. B., and Crosley, D. R., Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p.2133, 1996.
    Hartlieb, A. T., Markus, D., Kreutner, W. and Kohse-Höinghaus, K., "Measurement of Vibrational Energy Transfer of OH (A2Σ+, n¢ = 1 ® 0) in Low-Pressure Flames," Appl. Phys. B, Vol.65, pp.81–91, 1997.
    Harvey, R., and McColl, A., "The formation of C2 hydrocarbons within methane-oxygen flames," Seventeenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p.857, 1979.
    Hautman, D.J., Santoro, R.J., Dryer, F.L., and Glassman, I. "An overall and detailed kinetic study of the pyrolysis of propane," Int. J. Chem. Kinet., Vol.13, p.149, 1981.
    Hawthorn, R. D. and Nixon, A. C., AIAA J., Vol.4, p.513, 1966.
    Heard, D. E., Crosley, D. R., Jeffries, J. B., Smith, G. P. and Hirano, A., "Rotational Level Dependence of Predissociation in the n¢=3 Level of OH A2Σ+," J. Chem. Phys., Vol.96, No.6, pp.4366–4371, 1992a.
    Heard, D. E., Jeffries, J. B., Smith, G. P. and Crosley, D. R., "LIF Measurements in Methane/Air Flames of Radicals Important in Prompt-NO Formation," Combustion and Flame, Vol.88, pp.137–148, 1992b.
    Heitor, M. V., and Moreira, A. L. V., "Thermocouples and sample probes for combustion studies," Prog. Energy Combustion. Sci., Vol.19, pp.259-278, 1993.
    Herzberg, G., Spectra of Diatomic Molecules, Vol.I, Van Nostrand, New York, 1950.
    Hindmarsh, A. C., Livermore Solver for Ordinary Differential Equations, Lawrence Livemore Laboratory, Report in Preparation, Code Released under Trandaction No.3342 for Unlimited Release, 1980a.
    Hindmarch, A. C., ACM-Signum New-sletter, Vol.15, No.4, pp.10-11, 1980b.
    Hirschfelder, J. O., Curtiss, C. F. and Campbell, D.E. J. Phys. Chem. Vol.57, p.403, 1953.
    Hwang, S. M., Gardiner, W. C., Jr., Frenklach, M. and Hidaka, Y., Combust. Flame, Vol.67, p.65, 1987.
    Incropera, F. P., and DeWitt, D. P., Fundamentals of Heat and Mass Transfer, 2nd Ed., Purdue University, pp.339-340, 1985.
    Jachimowski, C. J., Combust. Flame, Vol.55, pp.213-224, 1984.
    JANAF, Thermochemical Tables, National Standards Reference Data Series, Report No.NSRDS-NBS 37: also Dow Chemical Company, distributed by Clearinghouse for Federal Scientific and Technical Information, PB168370 and subsequent updates, 1965.
    Jeffries, J. B., Kohse-Höinghaus, K., Smith, G. P., Copeland, R. A. and Crosley, D. R., "Rotational-Level-Dependent Quenching of OH(A2Σ+) at Flame Temperatures," Chem. Phys. Lett., Vol.152, No.2, pp.160–166, 1988.
    Kaiser, E. W., Westbrook, C. K. and Pitz, W. J., Int. J. Chem. Klnet., Vol.18, pp.655-688, 1986.
    Kanofsky, J. R., Lucas, D., and Gutman, D., Thirteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p.285, 1971.
    Kaskan, W. E., "The Dependence of Flame Temperature on Burning Velocity," 6th Symp. (Int.) on Combustion, the Combustion Inst., Pittsburgh, pp.134-143, 1957.
    Kee, R. J., Miller, J. A. and Jefferson, T. H., CHEMKIN: A General Purpose Problem-Independent, Transportable, Fortran, Chemical Kinetic Program Pachage, Sandia Report, No.SAND80-8003, 1980.
    Kee, R. J., Crcar, J. F., Smooke, M. D. and Miller, J. A., Sandia Report, No.SAND85–8240, 1985.
    Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E., and Miller, J. A., A Fortran Computer Code Package for the Evaluation of Gas Phase Multicomponent Transport Properties, Sandia Report, No.SAND86–8246, 1986.
    Kee, R. J., Rupley, F. M. and Miller, J. A., Sandia Report, No.SAND89–8009, 1989.
    Kee, R. J., Rupley, F. M., and Miller, J. A., Chemkin-II. A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, Sandia National Laboratories Report, No.SAND89-8009B, 1991.
    Kent, J. H., "A Non-Catalytic Coating for Platinum-Rhodium Thermocouples," Combust. Flame, Vol.14(3), pp.279-282, 1970.
    Ketterle, W., Schäfer, M., Arnold, A., and Wolfrum, J., "2D Single-Shot Imaging of HO Radicals Using Tunable Excimer Lasers," Appl. Phys. B, Vol.54, pp.109-112, 1992.
    Kim, G. S., Hitchcock, L. M., Rothe, E. W. and Reck, G. P., Appl. Phys. B, Vol.53, p.180, 1991.
    Koch, A., Chryssostomou, A., Andresen, P. and Bornscheuer, W., "Multi-Species Detection in Spray Flames with Tunable Excimer Lasers," Appl. Phys. B, Vol.56, pp.165–176, 1993a.
    Koch, A., Voges, H., Andresen, P., Schlüter, H., Wolff, D., Hentschel, W., Oppermann, W. and Rothe, E., "Planar Imaging of a Laboratory Flame and of Internal Combustion in an Automobile Engine Using UV Rayleigh and Fluorescence Light," Appl. Phys. B, Vol.56, pp.177–184, 1993b.
    Kohse-Höinghaus, K., Heidenreich, R and Just, T., "Determination of Absolute OH and CH Concentrations in a Low Pressure Flame by Laser-Induced Saturated Fluorescence," 20th Symposium (Int.) on Combustion, The Combustion Institute, pp.1177–1185, 1984.
    Kohse-Höinghaus, K., Jeffries, J. B., Copeland, R. A., Smith, G. P. and Crosley, D. R., "The Quantitative LIF Determination of OH Concentrations in Low-Pressure Flames," 22th Symposium (Int.) on Combustion, The Combustion Institute, pp.1857–1866, 1988.
    Kohse-Höinghaus, K., Meier, U. and Attal-Trétout, B., "Laser-Induced Fluorescence Study of OH in Flat Flames of 1–10 bar Compared with Resonance CARS Experiments," Applied Optics, Vol.29, No.10, pp.1560–1569, 1990.
    Kohse-Höinghaus, K., "Laser Techniques for the Quantitative Detection of Reactive Intermediates in Combustion Systems," Prog. Energy Combust. Sci., Vol.20, pp.203–279, 1994.
    Köllner, M., Monkhouse, P., and Wolfrum, J., "Time-Resolved LIF of OH (A2Σ+, n´=1 and n´=0) in Atmospheric Pressure Flames Using Picosecond Excitation," Chem. Phys. Lett., Vol.168, pp.355-360, 1990.
    Kovacs, I., Rotational Structure in the Spectra of Diatomic Molecules, Elsevier, New York, 1969.
    Laurendeau, N. M., "Temperature Measurements by Light-Scattering Methods," Prog. Energy Combust. Sci., Vol.14, pp.147–170, 1988.
    Laurendeau, N. M. and Goldsmith, J. E. M., "Comparison of Hydroxyl Concentration Profiles using Five Laser-Induced Fluorescence Methods in a Lean Subatmospheric-Pressure H2/O2/Ar Flame," Combust. Sci. and Tech., Vol.63, pp.139–152, 1989.
    Lengel, R. K., and Crosley, D. R., "Rotational Dependence of Vibrational Relaxation in A2Σ+ Hydroxyl," Chem. Phys. Lett., Vol.32(2), pp.261-264, 1975.
    Lengel, R. K., and Crosley, D. R., "Energy Transfer in A2Σ+ Hydroxyl. II. Vibrational," J. Chem. Phys., Vol.68(12), pp.5309-5324, 1978.
    Lewis, G. N. and Randall, M., Thermodynamics, McGraw-Hill Book Co., NY, 1961.
    Lifshitz, A., Scheller, K., and Burcat, A., Proc. Seventh Int. Shock Tube Symp., p.690, 1973.
    Lifshitz, A., and Frenklach, M., "Mechanism of the High Temperature Decomposition of Propane," J. Phys. Chem., Vol.79, p.686, 1975.
    Lu, C. C., Quantitative Analysis of OH-LIPF in High-Pressure Methane Flames, Ph. D. Thesis, The National Cheng Kung University, Taiwan, 2002.
    Lucht, R. P., Peterson, R. C. and Laurendeau, N. M., Report, No.PURDU-CL-78–06, 1978.
    Lucht, R. P., Sweeney, W., and Laurendeau, N. M., Appl. Opt., Vol.19, pp.3295–3300, 1980.
    Lucht, R. P., Sweeney, D. W. and Laurendeau, N. M., "Laser-Saturated Fluorescence Measurements of OH Concentration in Flames," Combust. Flame, Vol.50, pp.189–205, 1983.
    Lucht, R. P., Sweeney, D. W. and Laurendeau, N. M., "Laser-Saturated Fluorescence Measurements of OH in Atmospheric Pressure CH4/O2/N2 Flames Under Sooting and Non-Sooting Conditions," Combust. Sci. and Tech., Vol.2, pp.259–281, 1985.
    Lucht, R. P., Sweeney, D. W. and Laurendeau, N. M., "Time-Resolved Fluorescence investigation of Rotational Transfer in A2Σ+ (n = 0) OH," Applied Optics, Vol.25, No.22, pp.4086–4095, 1986.
    Luque, J. and Crosley, D. R., "Transition Probabilities in the A2Σ+–X2Πi Electronic System of OH," J. Chem. Phys., Vol.109, No.2, pp.439–448, 1998a.
    Luque, J. and Crosley, D. R., LIFBASE: Database and Spectral Simulation Program, SRI International, 1998b.
    Lutz, A. E., Kee, R. J., and Miller, J. A., Senkin. A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Seneitivity Analysis, Sandia National Laboratories Report, No.SAND87-8248, 1988.
    Marinov, N. M., Pitz, W. J., Westbrook, C. K., Vincitore, A. M.m Castaldi, M. J., Senkan, S. M., and Melins, C. F., "Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame," Combust. Flame, Vol.114, pp.192-213, 1998.
    Mathur, S., Tondon, P. K. and Saxena, S. C., Mol. Phys., Vol.12, p.569, 1967.
    Mckenzie, R. L. and Gross, K. P., Applied Optics, Vol.20, No.12, pp.2153-2165, 1981.
    McLain, A. G., and Jachimowski, C. J., NASA Technical Note D-8501, July 1977.
    Melius, C. F., Miller, J. A., Evleth, E. M., "Unimolecular reaction mechanisms involving C3H4, C4H4, and C6H6 hydrocarbon species," 24th Symp. (Intl.) Combust., The Combustion Institute, Pittsburgh, p.621, 1992.
    Miller, R. E., Seventh Symposium (International) on Combustion, p.417, Butterworths, 1959.
    Miller, J. A., Smooke, M. D., Rmgreen, and Kee, R. J., "Kinetic modeling of the oxidation of ammonia in flames," Combust. Sci. and Tech., Vol.34:1-61-6, pp.149-176, 1983.
    Miller, J. A., Branch, M. C., McLean,W. J., Chandler, D.W., Smooke, M. D., and Kee, R. J., Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p.673, 1984.
    Miller, J. A. and Bowman, C. T., Prog. Ener. Combust. Sci., Vol.15, pp.287–338, 1989.
    Myers, B. F., and Bartle, E. R., AIAA. J., Vol.7, pp.1862—1869, 1969.
    Nandula, S. P., Brown, T. M., Pitz, R. W. and DeBarber, P. A., "Single-Pulse, Simultaneous Multipoint Multispecies Raman Measurements in Turbulent Nonpremixed Jet Flames," Optics Letters, Vol.19, No.6, pp.414–416, 1994a.
    Nandula, S. P., Brown, T. M., Skaggs, P. A., Pitz, R. W. and DeBarber, P. A., "Multi-Species Line Raman Measurements in H2-Air Turbulent Flames," AIAA Paper, No.94–0227, 1994b.
    Nguyen, Q. V. and Paul, P. H., "Photochemical Effects of KrF Excimer Excitation in Laser-Induced Fluorescence Measurements of OH in Combustion Environments," Applied Physics B, Vol.72, pp.497–505, 2001.
    Pack, S. D., Renfro, M. W., King, G. B. and Laurendeau, N. M., "Laser-Induced Fluorescence Triple-Integration Method Applied to Hydroxyl Concentration and Fluorescence Lifetime Measurements," Combust. Sci. and Tech., Vol.140, pp.405–425, 1998.
    Paul, P. H., "A Model for Temperature-Dependent Collisional Quenching of OH A2Σ+," J. Quant. Spectrosc. Radiat. Transfer, Vol.51, No.3, pp.511–524, 1994.
    Paul, P. H., "Vibrational Energy Transfer and Quenching of OH A2Σ+ (n¢=1) Measured at High Temperatures in a Shock Tube," J. Phys. Chem., Vol.99, pp.8472–8476, 1995.
    Peeters, J., and Mahnen, G., "Structure of Ethylene-Oxygen Flames. Reaction Mechanism and Rate Constants of Elementary Reactions," Combust. Inst. European Symp., p.53, 1973.
    Pelikan, P., Applications of Numerical Methods in Molecular Spectroscopy, CRC Press, Inc., 1994.
    Penner, S. S., Quantitative Molecular Spectroscopy and Gas Emissivities, Addison Wesley, 1959.
    Peterson, R. C. and Laurendeau, N. M., "Emittance of Yttrium-Beryllium Oxide Thermocouple Coating", Combust. Flame, Vol.60, No.3, pp.279–284, 1985.
    Piepmeier, E. H., "Influence of non-quenching collisions upon. saturated resonance fluorescence," Spectrochim. Acta Part B. pp.27445-27452, 1972.
    Pitz, W. J., and Westbrook, C. K., "Chemical kinetics of the high pressure oxidation of n-butane and its relation to engine knock," Combust. Flame, Vol.63, pp.113-133, 1986.
    Qin, Z., Reaction Mechanism of Propane Oxidation, Ph. D. Thesis, The University of Texas at Austin, 1998.
    Qin, Z., Lissianski, V, V., Yang, H., Gardiner, W. C., Davis, S. G., Curs-Irphe, and Wang, H., "Combustion chemistry of propane: a case study of detailed reaction mechanism optimication," Proc. Combust. Inst., Vol.28, pp.1663-1669, 2000.
    Quagliaroli, T. M., Laufer, G., Krauss, R. H. and McDaniel, J. C., Jr., "Laser Selection Criteria for OH Fluorescence Measurements in Supersonic Combustion Test Facilities," AIAA Journal, Vol.31, No.3, pp.520–527, 1993.
    Ravikrishna, R. V. and Laurendeau, N., M., "Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide in Methane-Air and Ethane-Air Counterflow Diffusion Flames," Combust. Flame, Vol.120, pp.372–382, 2000.
    Reckers, W., Huwel, L., Grunefeld, and Andresen, P., "Spatially Resolved Multispecies and Temperature Analysis in Hydrogen Flames," Applied Optics, Vol.32, pp.907–918, 1993.
    Refael, S., and Sher, E., "Reaction kinetics of hydrogen-enriched methane-air and propane-air flames," Combust. Flame, Vol.78, pp.326-338, 1989.
    Reichardt, T. A., Klassen, M. S., King, G. B. and Laurendeau, N. M., "Measurements of Hydroxyl Concentrations and Lifetimes in Laminar Flames Using Picosecond Time-Resolved Laser-Induced Fluorescence," Applied Optics, Vol.35, No.12, pp.2125–2139, 1996.
    Reisel, J. R., Carter, C. D. and Laurendeau, N. M., J. Quant. Spectrosc. Radiat. Transfer, Vol.47, No.1, pp.43-54, 1962.
    Reisel, J. R., Carter, C. D. and Laurendeau, N. M., "Laser-Induced Fluorescence Measurements of Nitric Oxide in Laminar C2H6/O2/N2 Flames at High Pressure," Combustion and Flame, Vol.92, No.4, pp.485–489, 1993.
    Reisel, J. R. and Laurendeau, N. M., "Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide Formation in High-Pressure Flames," Combust. Sci. and Tech., Vol.98, pp.137–160, 1994.
    Rothe, E. W., Gu, Y.-W. and Reck, G. P., "Laser-Induced Predissociative Fluorescence: Dynamics and Polarization and the Effect of Lower-State Rotational Energy Transfer on Quantitative Diagnostics," Applied Optics, Vol.35, No.6, pp.934–947, 1996.
    Rothe, E. W. and Andresen, P., "Application of Tunable Excimer Lasers to Combustion Diagnostics: a Review," Applied Optics, Vol.36, No.18, pp.3971–4033, 1997.
    Rouse, P. E. and Engleman, R. J., J. Quant. Spectrosc. Radiat. Transfer, Vol.13, pp.1503, 1973.
    Salmon, J. T. and Laurendeau, N. M., "Calibration of Laser-Saturated Fluorescence Measurements Using Rayleigh Scattering," Applied Optics, Vol.24, No.1, pp.65–73, 1985.
    Sauas, R. C., Anderson, W. R., Dayton, D. C., Faust, C. M., and Howard, S. L., Combust. Flame, Vol.94, pp.407-425, 1993.
    Schaefer, H. F., Modern Theoretical Chemistry, 3rd Ed., Plenum, New York, Vol.3 and 4., 1977.
    Schmidt, S. C. and Malte, P. C., "Spectroscopic Absorptance Measurements of OH in High-Intensity Continuous Hydrogen/Air and Methane/Air Combustion," J. Quant. Spectrosc. Radiat. Transfer, Vol.16, pp.963–972, 1976.
    Schwarzwald, R., Monkhouse, P., Wolfrum, J., "Picosecond Fluorescence Lifetime Measurement of The OH Radical in an Atmospheric Pressure Flame," Chem. Phys. Lett., Vol.142, Iss.1-2, pp.15-18, 1987.
    Seery, D. J. and Zabielski, M. F., "Mass Spectrometer Probing of a CO-NH3-O2 Flame," Combust. Flame, Vol.28, No.1, pp.93–99, 1977.
    Seitzman, J. M., Quantitative Applications of Fluorescence Imaging in Combustion, Ph. D. Thesis, The Stanford University, 1991.
    Seitzman, J. M. and Hanson R. K., "Comparison of Excitation Techniques for Quantitative Fluorescence Imaging of Reacting Flows," AIAA Journal, Vol.31, No.3, pp.513–519, 1993a.
    Seitzman, J. M. and Hanson R. K., "Two-Line Planar Fluorescence for Temporally Resolved Temperature Imaging in a Reacting Supersonic Flow over a Body," Appl. Phys. B, Vol.57, pp.385–391, 1993b.
    Selzer, P. M., and Wang, C. C., "Quenching Rates and Fluorescence Efficiency in The A Σ State of OH," J. Chem. Phys., Vol.71, p.3786, 1979.
    Shuler, K. E., J. Chem. Phys., Vol.18, p.1221, 1950.
    Sick, V, Arnold, A, Diebel, E., Dreier, T., Ketterle, W., Lange, B., Wolfrum, J., Thiele, K. U., Behrendt, F. and Warnatz, J., "Two-Dimensional Laser Diagnostics and Modeling of Counterflow Diffusion Flames," 23th Symposium (Int.) on Combustion, The Combustion Institute, pp.495–501, 1990.
    Simons, J., J. Phys. Chem. Vol.95, p.1017, 1991.
    Sloane, T. M., Combust. Sci. Technol., Vol.63, p.287, 1989.
    Sloane, T. M., "Ignition and flame propagation modeling with an improved propane oxidation mechanism," Comb. Sci. Tech., Vol. 83, pp.77-96, 1992.
    Smooke, M.D. J. Comp. Phys. Vol.48, p.72, 1982.
    Smooke, M.D., Miller, J.A. and Kee, R.J. In Numerical Methods in Laminar Flame Propagation., N. Peters and J. Warnatz (Eds.), Friedr. Vieweg & Sohn, Wiesbaden, 1982.
    Smith, G. P. and Crosley, D. R., "Quantitative Laser-Induced Fluorescence in OH: Transition Probabilities and the Influence of Energy Transfer," 18th Symposium (Int.) on Combustion, The Combustion Institute, pp.1511–1520, 1981.
    Spaanjaars, J. J. L., ter Meulen, J. J. and Meijer, G.,"Relative Predissociation Rates of OH (A2Σ+, n¢ = 3) from Combined Cavity Ring Down–Laser-induced Fluorescence Measurements," J. Chem. Phys., Vol.107, No.7, pp.2242–2248, 1997.
    Spadaccini, L. J., and Colket III, M. B., Prog. Energy Sci., Vol.20, pp.431-460, 1994.
    Spalding, D.B. Philos. Trans Roy. Soc. Landon 249A, p.1, 1956.
    Spalding, D.B. and Stephenson, D.L., Proc. Roy. Soc. London 324A, p.315, 1971.
    Stein, S. E. and Fahr, A., J. Phys. Chem., Vol.89, p.3714, 1985.
    Steele, R.C., Malte, P. C., Nicol, D. G., and Kramlich, J. C., Combust. Flame, Vol.100, p.440, 1995.
    Steffens, K. L., Jeffries, J. B. and Crosley, D. R., "Collisional Energy Transfer in Predissociative OH Laser-Induced Fluorescence in Flames," Optics Letters, Vol.18, No.16, pp.1355–1357, 1993.
    Stein, S. E., Walker, J. A., Suryan, M. M., Fahr, A., "A new path to benzene in flames," 23rd Symp. (Intl.) Combust., The Combustion Institute, Pittsburgf, p.85, 1991.
    Steinberg, M. and Kaskan, W. E., Fifth Symposium (International) on Combustion, p.664, Reinhild, 1955.
    Stepowski, D. and Cottereau, M. J., "Time Resolved Study of Rotational Energy Transfer in A2Σ+ (n¢ = 0) State of OH in a Flame by Laser Induced Fluorescence," J. Chem. Phys., Vol.74, No.12, pp.6674–6679, 1981.
    Stepowski, D., 23th Symposium (Int.) on Combustion, The Combustion Institute, p.1839, 1990.
    Stewart, J. J. P. , In Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd (Eds.), VCH publishers, New York, p.45, 1990.
    Suntz, R., Becker, H., Monkhouse, P. and Wolfrum, J., "Two-Dimensional Visualization of the Flame Front in an Internal Combustion Engine by Laser-Induced Fluorescence of OH radicals," Appl. Phys. B, Vol.47, pp.287–293, 1988.
    Takubo, Y., Okamoto, T., Komine, N., and Yamamoto, M., "Absolute Density Measurement of OH Radicals in an Atmospheric Pressure Flame Using Time-Resolved Laser-Induced Fluorescence," Japanese Journal of Applied Physics, Vol.26, No.3, March, pp.416-418, 1987.
    Tamura, M., Berg, P. A., Harrington, J. E., Luque, J., Jeffries, J. B., Smith, G. P. and Crosley, D. R., "Collisional Quenching of CH(A), OH(A), and NO(A) in Low Pressure Hydrocarbon Flames," Combust. Flame, Vol.114, pp.502–514, 1998.
    Thomsen, D. D., Kuligowski, F. F. and Laurendeau N. M., "Modeling of NO Formation in Premixed, High-Pressure Methane Flames," Combust. Flame, Vol.119, pp.307–318, 1999.
    Tsang, W., Ing. J. Chem. Kin. I, Vol.245, 1969.
    Tsang, W., "Chemical kinetic data base for combustion chemistry. Part 3. Propane," J. Phy. Chem. Ref. Data, Vol.17, No.2, pp.887-951, 1988.
    Vagelopoulos, C. M., Egolfopoulos, f. N., and Law, C. K., "Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique," Twenty-Fifth Symposium (International) in combustion, The Combustion Institute pp. 1341-1347, 1994.
    Venizelos, D. T. and Sausa, R. C., "Laser-Induced Fluorescence, Mass Spectrometric, and Modeling Studies of Neat and NH3-Doped H2/N2O/Ar Flames," Combust. Flame, Vol.115, pp.313–326, 1998.
    Wang, H., Detailed kinetic modeling of soot particle formation in laminar premixed hydrocarbon flames, Ph. D. Thesis, Department of Materials Science and Engineering, The Pennsylvania State University, 1992.
    Warnatz, J., Ber. Bunsenges. Phys. Chem. Vol.82, p.193, 1978.
    Warnatz, J., Ber. Bunsenges. Phys. Chem. Vol.83, p.950, 1979.
    Warnatz, J., The structure of laminar alkane-, and acetylene flames. 18th Symp. (Intl.) Comb., The Combustion Institute, Pittsburgh, p.369, 1981a.
    Warnatz, J., Combust. Sci. & Tech. Vol.26, pp.203-213, 1981b.
    Warnatz, J., "The mechanism of high temperature combustion of propane and butane," Comb. Sci. Technol., Vol.34, pp.177-200, 1983a.
    Warnatz, J., "Survey of rate coefficients in the C/H/O system," In: Gardiner, W. C. Jr. (Ed.), Chemistry of Combustion Reactions, Springer, New York, in press, 1983b.
    Warnatz, J., "Rate Coefficients in the C/H./O System," in Combustion Chemistry, Edited by W. C. Gardiner, Jr., Springer-Verlag, New York Inc., Chapter 5, pp.197-360, 1984.
    Warnatz, J., Maas, U., and Dibble, R. W., Combustion, Springer, 1999.
    Wehrmeyer, J. A., Cheng, T. S. and Pitz, R. W., "Raman Scattering Measurements in Flame using a Tunable KrF Excimer Laser," Applied Optics, Vol.31, No.10, pp.1495–1504, 1992.
    Westbrook, C. K., Creighton, J., Lund, C., and Dryer, F. L., J. Phys. Chem., Vol.81, pp.2542-2554, 1977.
    Westbrook, C. K., and Pitz, W. J., Combust. Sci. and Tech., Vol.33, p.315, 1983a.
    Westbrook, C. K., and Pitz, W. J., Ninth International Colloquium on Dynamics of Explosions and Reactive Systems, 1983b.
    Westbrook, C. K., Pitz, W. J. and Urtiew, P. A., Propane oxidation: Kinetic mechanism and applications, NASA Technical Note DE83-009809, Mar, 1983.
    Westbrook, C. K., and Pitz, W. J., "A comprehensive chemical kinetic reaction mechanism for oxidation and pyrolysis of propane and propene," Combust. Sci. Tech., Vol.37, pp.117-152, 1984.
    Williams, B. A. and Fleming, J. W., "Comparative Species Concentrations in CH4/O2/Ar Flames Doped with N2O, NO and NO2," Combust. Flame, Vol.98, p.93, 1994.
    Williams, L. R. and Crosley, D. R., "Collisional Vibrational Energy Transfer of OH (A2Σ+, n¢=1)," J. Chem. Phys., Vol.104, No.17, pp.6507–6514, 1996.
    Yarkony, D. R., "A Theoretical Treatment of The Predissociation of The Individual Rovibronic Levels of OH/OD(A2Σ+)," J. Chem. Phys., Vol.97, p.1838, 1992.
    Yuan, T., Chang, C. M., and Liu, Y. H., "Shock-Tube Observation of the Ignition Delay for Stoichiometric Propane/Oxygen Mixtures," Transactions of the Aeronautical and Astronautical Society of the Republic of China., (02-0530-138), 2003.
    Zeldovich, Y. B., Frank-Kamenetskii, D. A., "The Theory of Thermal propagation of Flames", Zh Fiz Khim Vol.12, p.100, 1938.
    Zimont, V. L. and Trushin, Yu. M., Engl. Transl.:Combustion, Explosion and Shock Tube, p.51, 1967.

    下載圖示 校內:立即公開
    校外:2006-08-25公開
    QR CODE