簡易檢索 / 詳目顯示

研究生: 羅建睿
Lo, Chien-Jui
論文名稱: 製備金屬有機骨架/摻氮還原氧化石墨烯奈米複合材料作為鋅空氣電池之雙功能電觸媒
Fabrication of Co-based metal-organic frameworks/ N-doped reduced graphene oxide nanocomposites as bifunctional electrocatalysts for Zn-air batteries
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 131
中文關鍵詞: 摻氮還原氧化石墨烯金屬有機骨架氫氣處理雙功能電觸媒鋅空氣電池全固態鋅空氣電池
外文關鍵詞: metal-organic frameworks, nitrogen-doped reduced graphene oxide, oxygen reduction reaction, oxygen evolution reaction, zinc-air battery, all-solid-state zinc-air battery
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中利用高分子聚乙烯吡咯烷酮(PVP)、氧化石墨烯(GO)、有機配位體5-氨基四唑以及硝酸鈷在一步簡易水熱法的條件下合成鈷金屬有機骨架/摻氮還原氧化石墨烯之氧氣還原/氧氣氧化雙功能之電觸媒。從穿透式及掃描式電子顯微鏡可看出成功將金屬有機骨架生成於氮摻雜還原氧化石墨烯上,其粒徑大小約20~30 nm;更進一步透過拉曼圖譜及X光電子繞射鑑定可以確認鈷金屬有機骨架/氮摻雜還原氧化石墨烯奈米材料結構。為了改善觸媒催化效果,將鈷金屬有機骨架/氮摻雜還原氧化石墨烯在混合氣(95%Ar+5%H2)下500℃鍛燒三個小時,透過氫氣處理有效提升摻氮還原氧化石墨烯的還原程度,同時將導電性不佳中孔洞金屬有機骨架分解成鈷金屬/氧化鈷/四氧化三鈷/摻氮還原氧化石墨烯的結構(CoNRGO),其顆粒大小約50~60 nm。所得具最佳電催化特性之CoNRGO,其氧氣還原反應及氧氣產生反應之起始電位分別為 0.85 V與1.55 V (V vs. RHE)。其雙功能電催化指標 ΔE之最低值為0.83 V,且穩定性勝過商用觸媒。進一步將CoNRGO組裝成液態及全固態鋅空氣電池,顯示其具有良好的可充放電特性及高功率密度(液態鋅空氣電池為111 mW cm-2、全固態鋅空氣電池為79 mW cm-2 )與高能量密度(全固態鋅空氣電池為563 Wh kg-1)。在實際應用中,兩種型態電池皆能使LED燈發亮。據此,本研究提出一創新且簡易的方式製得以金屬有機骨架為犧牲模板之雙功能氧氣電催化觸媒,並成功將其實際應用於鋅空氣電池中。

    In this study, at first, the Co-based MOFs embedded in nitrogen-doped reduced graphene oxide (MOFs/NRGO) was synthesized as an effective electrocatalyst for ORR/OER by a facile one-step hydrothermal reaction in a mixture of graphene oxide (GO) solution, polyvinylpyrrolidone, cobalt nitrate, and organic ligands 5-amino-1H-tetrazol. From TEM and SEM analyses, it was found that the MOFs nanoparticles with an average size of about 20-30 nm have been decorated successfully on the surface of NRGO nanosheets. Also, from the XRD and Raman analyses, the formation of MOFs/NRGO could be confirmed. Secondly, the MOFs/NRGO was further pyrolyzed in Ar/H2 (95/5) atmosphere. The result showed that hydrogen gas could enhance the reduction degree of NRGO and made the MOFs turn into Co/CoO/Co3O4/NRGO (CoNRGO) with an average size of about 50-60 nm at a relatively low temperature. Its onset-potentials for ORR and OER were 0.85 V and 1.55 V (V vs. RHE), respectively. Also, it showed the lowest ΔE of 0.83 V and better stability than commercial catalysts. Furthermore, CoNRGO was used to assemble the liquid-type and all-solid-state Zn-air batteries which could power a LED light and exhibited good rechargeability, high power densities and high energy density. Accordingly, this work provided a facile and effective strategy for the fabrication of MOF-derived bifunctional oxygen catalysts and the resulting CoNRGO could be successfully utilized in Zn-air batteries.

    目錄 中文摘要 I Abstract II 目錄 IX 圖目錄 XI 表目錄 XV 第一章 緒論 1 1.1前言 1 1.2空氣電池種類及應用 3 1.3材料簡介 5 1.3.1石墨烯 5 1.3.2 金屬有機骨架 16 1.4鋅空氣電池的特性及發展 21 1.4.1氧氣反應機制 24 1.4.2氧氣反應催化觸媒 30 1.4.3鋅空氣電池常見雙功能電觸媒 37 1.5 研究動機與目的 42 第二章 基礎理論 44 2.1循環伏安法 44 2.2線性掃描法 46 2.2.1電池極化現象 49 2.3定電壓法 53 2.4定電流充放電法 54 第三章 實驗部分 56 3.1 藥品與儀器 56 3.1.1藥品 56 3.1.2儀器 59 3.2實驗步驟 61 3.2.1 GO的製備 61 3.2.2 MOFs/NRGO之製備 62 3.2.3 MOFs/NRGO在不同氣氛之熱處理 63 3.2.4旋轉電極漿料之製備 67 3.2.5液態鋅空氣電池製備及組裝 67 3.2.6膠態電解質製備及全固態鋅空氣電池組裝 68 3.2.7材料特性分析 71 3.2.8電觸媒特性分析 73 3.2.9鋅空氣電池電化學特性分析 76 第四章 結果與討論 77 4.1材料基本物性 77 4.2電觸媒之氧氣還原及氧氣產生性能 97 4.3液態鋅空氣電池性能 113 4.4全固態鋅空氣電池性能 116 第五章 結論 120 參考文獻 122

    [1] 李河清, 李元薇, 氣候變遷調適與人類移動:對COP21與《巴黎協定》的反思, 台灣人權學刊, 3(3), 27­41, 2016.
    [2] 張耀仁, 陳中舜, 馮君強, 張嘉諳, 我國非核與再生能源政策對環境及經濟之影響初探, 經濟前瞻, 172, 111­116, 2017.
    [3]馮晶, 陳敬超, 肖冰, 金屬空氣電池技術研究進展, 材料導報, 19(10), 59­62, 2005.
    [4] C. P. Grey and J. M. Tarascon, Sustainability and in situ monitoring in battery development, Nat.Mater., 16(1), 45­56, 2016.
    [5] 李伯潔, 胡啟章, 鋅空氣電池的發展現況與研發, 化工, 62(4), 3­18, 2015.
    [6] Q. Liu, Z. Chang, Z. Li, and X. Zhang, Flexible metal-Air batteries: progress, challenges, and perspectives, Small Methods, 2(2), 1700231, 2018.
    [7] Y.-J. Wang, B. Fang, D. Zhang, A. Li, D. P. Wilkinson, A. Ignaszak, L. Zhang, and J. Zhang, A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal–air batteries, Electrochem. Eng. Rev., 1(1), 1­34, 2018.
    [8] 葉俊圻, 可充電鋅空氣電池之空氣電極改質研究, 逢甲大學化學工程學系碩士論文, 2015.
    [9] A. K. Geim and K. S. Novoselov, The rise of graphene, Nanoscience And Technology: A Collection of Reviews from Nature Journals: World Scientific, 11­19, 2010.
    [10] 孫嘉良, 石墨烯的近期研究進展專輯前言, 化工, 65(3), 1­2, 2018.
    [11] 何世明, 蘇清源, 石墨烯奈米帶的近期發展與應用, 國家奈米元件實驗室奈米通訊, 23(1), 2­7, 2016.
    [12] 張志振, 石墨烯之超導性概論, 機械工業雜誌, 411, 118­127, 2017.
    [13] 劉光華, 應用量子信息論計算與研究石墨烯, 化學, 75(2), 169­178, 2017.
    [14] S. Predin, P. Wenk, and J. Schliemann, Trigonal warping in bilayer graphene: Energy versus entanglement spectrum, Phys. Rev. B , 93(11), 115106, 2016.
    [15] 蘇清源, 石墨烯氧化物之特性與應用前景, 物理雙月刊, 33(2), 163­167, 2011.
    [16] C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, and F.-R. Chen, Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition, Nano Lett., 11(9), 3612­3616, 2011.
    [17] H. Bai, C. Li, and G. Shi, Functional composite materials based on chemically converted graphene, Adv. Mater., 23(9), 1089­1115, 2011.
    [18] K. N. Wood, R. O'Hayre, and S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications, Energy Environ. Sci., 7(4), 1212­1249, 2014.
    [19] J. Wang, T. Zhou, H. Deng, F. Chen, K. Wang, Q. Zhang, and Q. Fu, An environmentally friendly and fast approach to prepare reduced graphite oxide with water and organic solvents solubility, Colloids Surf. B. Biointerfaces, 101, 171­176, 2013.
    [20] 謝宜㚬, 以快速加熱法合成含氮拆層石墨及其應用在質子交換膜燃料電池之陰極觸媒特性, 成功大學化學工程學系碩士論文, 2014.
    [21] Y. Okamoto, First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon, Appl. Surf. Sci., 256(1), 335­341, 2009.
    [22] Z. Hu, Z. Zhang, Z. Li, M. Dou, and F. Wang, One-step conversion from core-shell metal-organic framework materials to cobalt and nitrogen codoped carbon nanopolyhedra with hierarchically porous structure for highly efficient oxygen reduction, ACS Appl. Mater. Interfaces, 9(19), 16109­16116, 2017.
    [23] Y. Shi, Y. Wang, Y. Yu, Z. Niu, and B. Zhang, N-doped graphene wrapped hexagonal metallic cobalt hierarchical nanosheet as a highly efficient water oxidation electrocatalyst, J. Mater. Chem. A, 5(19), 8897­8902, 2017.
    [24] J. Wei, Y. Hu, Y. Liang, B. Kong, Z. Zheng, J. Zhang, S. P. Jiang, Y. Zhao, and H. Wang, Graphene oxide/core–shell structured metal–organic framework nano-sandwiches and their derived cobalt/N-doped carbon nanosheets for oxygen reduction reactions, J. Mater. Chem. A, 5(21), 10182­10189, 2017.
    [25] R. Li, X. Wang, Y. Dong, X. Pan, X. Liu, Z. Zhao, and J. Qiu, Nitrogen-doped carbon nanotubes decorated with cobalt nanoparticles derived from zeolitic imidazolate framework-67 for highly efficient oxygen reduction reaction electrocatalysis, Carbon, 132, 580­588, 2018.
    [26] A. H. Chughtai, N. Ahmad, H. A. Younus, A. Laypkov, and F. Verpoort, Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations, Chem. Soc. Rev., 44(19), 6804­6849, 2015.
    [27] A. Mahmood, W. Guo, H. Tabassum, and R. Zou, Metal-organic framework-based nanomaterials for electrocatalysis, Adv. Energy Mater. , 6(17), 1600423, 2016.
    [28] Y. Liu, H. Jiang, J. Hao, Y. Liu, H. Shen, W. Li, and J. Li, Metal-organic framework-derived reduced graphene oxide-supported ZnO/ZnCo2O4/C hollow nanocages as cathode catalysts for aluminum-O2 batteries, ACS Appl. Mater. Interfaces, 9(37), 31841­31852, 2017.
    [29] S. Lu, Y. Jin, H. Gu, and W. Zhang, Recent development of efficient electrocatalysts derived from porous organic polymers for oxygen reduction reaction, Sci. China: Chem., 60(8), 999­1006, 2017.
    [30] M. B. Solomon, T. L. Church, and D. M. D'Alessandro, Perspectives on metal–organic frameworks with intrinsic electrocatalytic activity, Cryst. Eng. Comm, 19(29), 4049­4065, 2017.
    [31] X. Cao, C. Tan, M. Sindoro, and H. Zhang, Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion, Chem. Soc. Rev., 46(10), 2660­2677, 2017.
    [32] Y. Zhao, X. Li, J. Liu, C. Wang, Y. Zhao, G. Yue, and M.-d. ZnO, Ni3ZnC0-7/C hybrids yolk–shell microspheres with excellent electrochemical performances for lithium ion batteries. ACS Appl. Mater. Interfaces, 8(10), 6472­6480, 2016.
    [33] Z. Li, C. Li, X. Ge, J. Ma, Z. Zhang, Q. Li, C. Wang, and L. Yin, Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries, Nano Energy, 23, 15­26, 2016.
    [34] B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. D. Lou, and X. Wang, A metal–organic framework-derived bifunctional oxygen electrocatalyst, Nature Energy, 1(1), 15006, 2016.
    [35] T. Liu, C. Dai, M. Jia, D. Liu, S. Bao, J. Jiang, M. Xu, and C. M. Li, Selenium embedded in metal–organic framework derived hollow hierarchical porous carbon spheres for advanced lithium–selenium batteries, ACS Appl. Mater. Interfaces, 8(25), 16063­16070, 2016.
    [36] P. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue, and H. Pang, Rechargeable zinc–air batteries: a promising way to green energy, J. Mater. Chem. A, 5(17), 7651­7666, 2017.
    [37] J. Lee, B. Jeong, and J. D. Ocon, Oxygen electrocatalysis in chemical energy conversion and storage technologies, Current Appl. Phy., 13(2), 309­321, 2013.
    [38] X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F. T. Goh, T. A. Hor, Y. Zong, and Z. Liu, Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts, ACS Catalysis, 5(8), 4643­4667, 2015.
    [39] H. S. Wroblowa and G. Razumney, Electroreduction of oxygen: a new mechanistic criterion, J. Electroanal. Chem. Interfacial Electrochem., 69(2), 195­201, 1976.
    [40] T. Toda, H. Igarashi, H. Uchida, and M. Watanabe, Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co, J. Electrochem. Soc., 146(10), 3750­3756, 1999.
    [41] J. Hirschenhofer, D. Stauffer, R. Engleman, and M. Klett, Fuel Cell Handbook, Parsons Corporation, 25­42, 1998.
    [42] F. Cheng and J. Chen, Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts, Chem. Soc. Rev., 41(6), 2172­2192, 2012.
    [43] J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-Horn, Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries, Nat. Chem., 3(7), 546, 2011.
    [44] E. Antolini, iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells, , ACS Catal., 4(5), 1426­1440, 2014.
    [45] I.-H. Kim and K.-B. Kim, Ruthenium oxide thin film electrodes for supercapacitors, Electrochem. Solid-State Lett., 4(5), A62­A64, 2001.
    [46] J. T. Mefford, X. Rong, A. M. Abakumov, W. G. Hardin, S. Dai, A. M. Kolpak, K. P. Johnston, and K. J. Stevenson, Water electrolysis on La1-X SrX CoO3-X perovskite electrocatalysts, Nat. Commun., 7, 11053, 2016.
    [47] J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles, Science, 334(6061), 1383­1385, 2011.
    [48] T. Sarjono, Using mesoporous N-doped TiO2 supported Co3O4 as oxygen evolution electrocatalyst in alkaline medium, Master's thesis, National Taiwan University of Science and Technology, 2014.
    [49] Jalan, Vinod M., Noble metal/vanadium alloy catalyst and method for making,U.S. Patent No. 4, 202(934), 1980.
    [50] H. Yang, N. Alonso-Vante, J.-M. Léger, and C. Lamy, Tailoring, Structure, and activity of carbon-supported nanosized Pt−Cr alloy electrocatalysts for oxygen reduction in pure and methanol-containing electrolytes, J. Phys. Chem. B , 108(6), 1938­1947, 2004.
    [51] L. Santos, C. Oliveira, I. Moraes, and E. Ticianelli, Oxygen reduction reaction in acid medium on Pt–Ni/C prepared by a microemulsion method, J. Electroanal. Chem., 596(2), 141­148, 2006.
    [52] K. Neyerlin, R. Srivastava, C. Yu, and P. Strasser, Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR), J. Power Sources, 186(2), 261­267, 2009.
    [53] M. Rojas, M. Esplandiu, L. Avalle, E. Leiva, and V. Macagno, The oxygen and chlorine evolution reactions at titanium oxide electrodes modified with platinum, Electrochim. Acta, 43(12­13), 1785­1794, 1998.
    [54] T. Reier, M. Oezaslan, and P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials, ACS Catal., 2(8), 1765­1772, 2012.
    [55] Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions, J. Phys. Chem. Lett., 3(3), 399­404, 2012.
    [56] S. G. Peera, J. Balamurugan, N. H. Kim, and J. H. Lee, Sustainable synthesis of Co@NC core shell nanostructures from metal organic frameworks via mechanochemical coordination self-assembly: an efficient electrocatalyst for oxygen reduction reaction, Small, 14(19), 1800441, 2018.
    [57] B. Y. Guan, Y. Lu, Y. Wang, M. Wu, and X. W. D. Lou, Porous iron-cobalt alloy/nitrogen-doped carbon cages synthesized via pyrolysis of complex metal-organic framework hybrids for oxygen reduction, Adv. Funct. Mater., 28(10), 1706738, 2018.
    [58] Z. Yu, Y. Bai, Y. Liu, S. Zhang, D. Chen, N. Zhang, and K. Sun, Metal-organic-framework-derived yolk-shell-structured cobalt-based bimetallic oxide polyhedron with high activity for electrocatalytic oxygen evolution, ACS Appl. Mater. Interfaces, 9(37), 31777­31785, 2017.
    [59] M. Liu, X. Lu, C. Guo, Z. Wang, Y. Li, Y. Lin, Y. Zhou, S. Wang, and J. Zhang, Architecting a mesoporous N-doped graphitic carbon framework encapsulating cote2 as an efficient oxygen evolution electrocatalyst, ACS Appl. Mater. Interfaces, 9(41), 36146­36153, 2017.
    [60] Q. L. Zhu, W. Xia, T. Akita, R. Zou, and Q. Xu, Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction, Adv. Mater., 28(30), 6391­8, 2016.
    [61] B. Chen, X. He, F. Yin, H. Wang, D.-J. Liu, R. Shi, J. Chen, and H. Yin, MO-Co@N-Doped Carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-air battery, Adv. Funct. Mater., 27(37), 1700795, 2017.
    [62] M. Zhang, Q. Dai, H. Zheng, M. Chen, and L. Dai, Novel MOF-Derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting, Adv. Mater., 30(10), 1705431, 2018.
    [63] Z. Guo, F. Wang, Y. Xia, J. Li, A. G. Tamirat, Y. Liu, L. Wang, Y. Wang, and Y. Xia, In situ encapsulation of core–shell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries, J. Mater. Chem. A, 6(4), 1443­1453, 2018.
    [64] Z. Li, M. Shao, Q. Yang, Y. Tang, M. Wei, D. G. Evans, and X. Duan, Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis, Nano Energy, 37, 98­107, 2017.
    [65] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction, Nat. Mater., 10(10), 780, 2011.
    [66] L. Wan, J. Wei, Y. Liang, Y. Hu, X. Chen, E. Shamsaei, R. Ou, X. Zhang, and H. Wang, ZIF-derived nitrogen-doped carbon/3D graphene frameworks for all-solid-state supercapacitors, RSC Adv., 6(80), 76575­76581, 2016.
    [67] J. Zhou, N. Lin, W. l. Cai, C. Guo, K. Zhang, J. Zhou, Y. Zhu, and Y. Qian, Synthesis of S/CoS2 nanoparticles-embedded n-doped carbon polyhedrons from polyhedrons ZIF-67 and their properties in lithium-sulfur batteries, Electrochim. Acta, 218, 243­251, 2016.
    [68] X. Deng, J. Li, S. Zhu, F. He, C. He, E. Liu, C. Shi, Q. Li, and N. Zhao, Metal–organic frameworks-derived honeycomb-like Co3O4/three-dimensional graphene networks/Ni foam hybrid as a binder-free electrode for supercapacitors, J. Alloys Compd., 693, 16­24, 2017.
    [69] T. Huang, Y. Chen, and J.-M. Lee, Two-Dimensional Cobalt/N-Doped carbon hybrid structure derived from metal–organic frameworks as efficient electrocatalysts for hydrogen evolution, ACS Sustainable Chem. Eng., 5(7), 5646­5650, 2017.
    [70] Y. Yang, F. Li, W. Li, W. Gao, H. Wen, J. Li, Y. Hu, Y. Luo, and R. Li, Porous CoS2 nanostructures based on ZIF-9 supported on reduced graphene oxide: Favourable electrocatalysis for hydrogen evolution reaction, Int. J. Hydrogen Energy, 42(10), 6665­6673, 2017.
    [71] Z. Zhu, Y. Yang, Y. Guan, J. Xue, and L. Cui, Construction of a cobalt-embedded nitrogen-doped carbon material with the desired porosity derived from the confined growth of MOFs within graphene aerogels as a superior catalyst towards HER and ORR, J. Mater. Chem. A, 4(40), 15536­15545, 2016.
    [72] S. Liu, X. Zhang, G. Wang, Y. Zhang, and H. Zhang, High-Efficiency Co/CoxSy@S,N-Codoped porous carbon electrocatalysts fabricated from controllably grown sulfur- and nitrogen-including cobalt-based MOFs for rechargeable zinc-air batteries, ACS Appl. Mater. Interfaces, 9(39), 34269­34278, 2017.
    [73] C.-Y. Su, H. Cheng, W. Li, Z.-Q. Liu, N. Li, Z. Hou, F.-Q. Bai, H.-X. Zhang, and T.-Y. Ma, Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery, Adv. Energy Mater., 7(13), 1602420, 2017.
    [74] M. Xiong and D. G. Ivey, Electrodeposited Co-Fe as an oxygen evolution catalyst for rechargeable zinc-air batteries, Electrochem. Commun., 75, 73­77, 2017.
    [75] I. S. Amiinu, X. Liu, Z. Pu, W. Li, Q. Li, J. Zhang, H. Tang, H. Zhang, and S. Mu, From 3D ZIF Nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries, Adv. Funct. Mater., 28(5), 1704638, 2018.
    [76] Z. Pei, Z. Tang, Z. Liu, Y. Huang, Y. Wang, H. Li, Q. Xue, M. Zhu, D. Tang, and C. Zhi, Construction of a hierarchical 3D Co/N-carbon electrocatalyst for efficient oxygen reduction and overall water splitting, J. Mater. Chem. A , 6(2), 489­497, 2018.
    [77] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical Methods: Fundamentals and Applications,Wiley, 1-87, 2001.
    [78] 胡啟章, 電化學原理與方法. 五南圖書出版股份有限公司, 2002.
    [79] W. Xia, A. Mahmood, Z. Liang, R. Zou, and S. Guo, Earth-Abundant nanomaterials for oxygen reduction, Angew. Chem. Int. Ed. Engl., 55(8), 265076, 2016.
    [80] X. Chen, K. Eckhard, M. Zhou, M. Bron, and W. Schuhmann, Electrocatalytic activity of spots of electrodeposited noble-metal catalysts on carbon nanotubes modified glassy carbon, Anal. Chem., 81(18), 7597­7603, 2009.
    [81] Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu, and J. Lu, Atomically Thin Mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc-air batteries, Adv. Mater., 30(4), 2018.
    [82] M. Yu, Z. Wang, C. Hou, Z. Wang, C. Liang, C. Zhao, Y. Tong, X. Lu, and S. Yang, Nitrogen-Doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries, Adv. Mater., 29(15), 2017.
    [83] A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications,Wiley, 186-197, 2001.
    [84] Y. W. Rho, O. A. Velev, S. Srinivasan, and Y. T. Kho, Mass transport phenomena in proton exchange membrane fuel cells using O2/He, O2/Ar, and O2/N2 mixtures in experimental analysis, J. Electrochem. Soc., 141(8), 2084­2089, 1994.
    [85] W. S. Hummers Jr and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80(6), 1339­1339, 1958.
    [86] Brunauer, Stephen, Paul Hugh Emmett, and Edward Teller. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 60(2), 309-319, 1938.
    [87] W. Liu and X.-B. Yin, Metal–organic frameworks for electrochemical applications, Trends Anal. Chem., 75, 86­96, 2016.
    [88] H.-S. Lu, H. Zhang, X. Zhang, N. Sun, X. Zhu, H. Zhao, and G. Wang, Transformation of carbon-encapsulated metallic Co into ultrafine Co/CoO nanoparticles exposed on N-doped graphitic carbon for high-performance rechargeable zinc-air battery, Appl. Surf. Sci., 448, 369­379, 2018.
    [89] Y.-N. Chen, Y. Guo, H. Cui, Z. Xie, X. Zhang, J. Wei, and Z. Zhou, Bifunctional electrocatalysts of MOF-derived Co–N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn–air batteries, J. Mater. Chem. A, 6(20), 9716­9722, 2018.
    [90] B. Chen, G. Ma, Y. Zhu, and Y. Xia, Metal-organic-frameworks derived cobalt embedded in various carbon structures as bifunctional electrocatalysts for oxygen reduction and evolution reactions, Sci. Rep., 7(1), 5266, 2017.
    [91] R. Zhao, W. Xia, C. Lin, J. Sun, A. Mahmood, Q. Wang, B. Qiu, H. Tabassum, and R. Zou, A pore-expansion strategy to synthesize hierarchically porous carbon derived from metal-organic framework for enhanced oxygen reduction, Carbon, 114, 284­290, 2017.
    [92] S. Liu, H. Zhang, Q. Zhao, X. Zhang, R. Liu, X. Ge, G. Wang, H. Zhao, and W. Cai, Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions, Carbon, 106, 74­83, 2016.
    [93] Q. Wang, W. Hu, and Y. Huang, Nitrogen doped graphene anchored cobalt oxides efficiently bi-functionally catalyze both oxygen reduction reaction and oxygen revolution reaction, Int. J. Hydrogen Energy, 42(9), 5899­5907, 2017.
    [94] M. Liu, J. Liu, Z. Li, and F. Wang, Atomic-Level Co3O4 layer stabilized by metallic cobalt nanoparticles: a highly active and stable electrocatalyst for oxygen reduction, ACS Appl. Mater. Interfaces, 10(8), 7052­7060, 2018.
    [95] X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao, and W. Hu, NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries, Nano Energy, 31, 541­550, 2017.
    [96] M. Wang, T. Qian, J. Zhou, and C. Yan, An efficient bifunctional electrocatalyst for a zinc-air battery derived from Fe/N/C and bimetallic metal-organic framework composites, ACS Appl. Mater. Interfaces, 9(6), 5213­5221, 2017.
    [97] H.-S. Lu, H. Zhang, R. Liu, X. Zhang, H. Zhao, and G. Wang, Macroscale cobalt-MOFs derived metallic Co nanoparticles embedded in N-doped porous carbon layers as efficient oxygen electrocatalysts, Appl. Surf. Sci., 392, 402­409, 2017.
    [98] G. Li, X. Wang, J. Fu, J. Li, M. G. Park, Y. Zhang, G. Lui, and Z. Chen, Pomegranate-Inspired design of highly active and durable bifunctional electrocatalysts for rechargeable metal-air batteries, Angew. Chem. Int. Ed. Engl., 55(16), 4977­82, 2016.
    [99] X. Li, F. Dong, N. Xu, T. Zhang, K. Li, and J. Qiao, Co3O4/MnO2/hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc-air batteries, ACS Appl. Mater. Interfaces, 10(18), 15591­15601, 2018.
    [100]W. Niu, Z. Li, K. Marcus, L. Zhou, Y. Li, R. Ye, K. Liang, and Y. Yang, Surface-Modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-air batteries, Adv. Energy Mater., 8(1), 1701642, 2018.
    [101]Y. Zhao, Q. Lai, Y. Wang, J. Zhu, and Y. Liang, Interconnected hierarchically porous Fe, N-codoped carbon nanofibers as efficient oxygen reduction catalysts for zn-air batteries, ACS Appl. Mater. Interfaces, 9(19), 16178­16186, 2017.
    [102]F. Ming, H. Liang, H. Shi, X. Xu, G. Mei, and Z. Wang, MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting, J. Mater. Chem. A, 4(39), 15148­15155, 2016.
    [103]X. Chen, B. Liu, C. Zhong, Z. Liu, J. Liu, L. Ma, Y. Deng, X. Han, T. Wu, W. Hu, and J. Lu, Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display, Adv. Energy Mater., 7(18), 1700779, 2017.

    無法下載圖示 校內:2023-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE