| 研究生: |
李宜謙 Lee, I-Chien |
|---|---|
| 論文名稱: |
應用晶格波茲曼法模擬三維複雜幾何形狀管道之流動問題 Simulation of Fluid Flows in 3D Complex Channels by Lattice Boltzmann Method |
| 指導教授: |
賴新一
Lai, Xin-Yi 陳朝光 Chen, Cha'o-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 晶格波茲曼法 、複雜幾何 、障礙物 、柱管 |
| 外文關鍵詞: | Lattice Boltzmann method, complex geomery, obstacles, tube |
| 相關次數: | 點閱:91 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
晶格波茲曼法是近年來具前瞻性的數值運算方法,能有效且快速地模擬傳統計算流體力學難以勝任之複雜幾何形狀問題。本文即利用晶格波茲曼法來模擬低雷諾數、不可壓縮、穩態下之三維複雜幾何形狀管道流場,藉由此研究來模擬出真實情形下的三維流動情形。為了確保流場的適用性及避免太大的壓縮性效應,本文所模擬的雷諾數最大為Re=20。
本文分為兩部份。一為藉著置入不同半徑大小的半圓形障礙物來分析流道中障礙物大小及擺放位置對速度場的局部影響,壓力以及摩擦阻抗等。二為模擬各種截面柱管。將圓柱管及橢圓柱管模擬出的數值解結果與 poiseuille flow 其解析解比較印證所得到之結果同樣準確。接著模擬無解析解的六邊形柱管,分析其速度場及摩擦阻抗等。
障礙物在流場中扮演擾動的角色,改變了流體的流動路線,因為造成流道截面積改變,所以導致了流場分佈的變化,障礙物後側垂直流動增強,並形成環狀迴流區,不但影響了通過之流體,也造成了壓降與摩擦阻抗的變化。
The lattice Boltzmann method is a kind of forward-looking numerical method. It can simulate complex problems quickly what traditional computational fluid dynamics cannot solve. In this study, the lattice Boltzmann method is applied to simulate incompressible steady flow of complex geometry channels in three-dimension under low Reynolds number. It shows the true flow situation in three-dimensional channels by the study. In order to restrict the simulations to three-dimensional flows, the investigated Reynolds number range is limited to a maximum value of
In the study, it is divided into two parts, one analyzes the local influence on velocity field, pressure and friction by inserting semicircular obstacles of different radii, the other simulates different cross-section tubes. Compared the numerical solutions of circular tube and elliptical tube with analytical solution, it can get good result. And then simulates hexagonal tubes, analyzes the local influence on velocity field and friction.
Interruption within the fluid field is caused by the obstacles . The direction of fluid flow toward and channel area were changed by obstacles, causing velocity field to be changed. The interruption strengthends the vertical direction flow in some area and formed the recirculation region behind obstacles. But it also caused the pressure losses and friction variably.
1.Abbassi, Hassen, & Turki, Said., & Nasrallah, Sassi Ben., “Numerical investigation of forced convection in a plane channel with a built-in triangular prism”, Int. J. Therm. Sci., Vol. 40, pp. 649-658, 2001.
2.Alexander, F. J., & Chen, S., & Stering, J. D., “Lattice Boltzmann thermohydrodynamics”, Phys. Rev. E, Vol. 47, pp. R2249-2252, 1993.
3.Bhatnagar, P.L., & Gross, E.P., & Krook, M., “A model for collision processes in gases. Ⅰ. Small amplitude processes in charged and nrutral one-component systems”, Phys. Rev., Vol. 94(3), pp. 511-525, 1954.
4.Breuer, M., & Bernsdorf, J., & Zeiser, T., & Durst, F., “Accurate computations of the laminar flow past a square cylinder based on two different method: lattice-Boltzmann and finite-volume”, Int. J. Heat Fluid Flow., Vol. 94(3), pp. 511-525, 2000.
5.Chakraborty, Jyoti, & Verma, Nishith, & Chhabra, R. P., “Wall effects in flow past a circular cylinder in a plane channel: a numerical study”, Chem. Eng. Process., Vol. 43, pp. 1529-1537, 2004.
6.Chen, Chao-Kuang, & Yen, Tzu-Shuang, & Yang, Yue-Tzu, “Lattice Boltzmann method simulation of backward-facing step on convective heat transfer with field synergy principle”, Int. J. Heat Mass Transfer, Vol. 49(5-6), pp. 1195-1204, 2006.
7.Chen, Hudong, & Chen, Shiyi, & Matthaeus, William H., “Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method”, Phys. Rev. A, Vol. 45, pp. R5339-5342, 1992.
8.Chen, Shiyi, & Martinez, Daniel, “On boundary condition in lattice Boltzmann methods”, Phys. Fluids, Vol. 8(9), pp. 2527-2536, 1996.
9.Chen, Shiyi, & Doolen, Gary D., “Lattice Boltzmann model for fluid flows”, Annu. Rev. Fluid Mech., Vol. 30, pp. 329-364, 1998.
10.d’Humiéres, D., & Lallemand, P., “Numerical simulations of hydrodynamics with lattice gas automata in two dimensions”, Complex Systems, Vol. 1, pp. 599-632, 1987.
11. Dieter, A. Wolf-Gladrow, “Lattice-gas cellular autimata and lattice Boltzmann models”, Springer, Germany, 2000.
12.Dong, YF ; Zhang, JY ; Yan, GW, “A higher-order moment method of the lattice Boltzmann model for the conservation law equation”, APPLIED MATHEMATICAL MODELLING Vol.34(1) , pp. 481-494, 2010
13.Filippova, Olga, & Hänel, Dieter, “Grid refinement for lattice-BGK models”, J. Comput. Phys., Vol. 147(1), pp. 219-228, 1998.
14.Grunau,Daryl, & Chen, Shiyi, & Eggert, Kenneth, “A lattice Boltzmann model for multiphase fluid flows”, Phys. Fluids A, Vol. 5(10), pp. 2557-2562, 1993.
15.Guo, Zhaoli, & Zhao, T. S., “Lattice Boltzmann model for incompressible flows through porous media”, Phys. Rev. E, Vol. 66, pp. 036304, 2002.
16.Guo, Zhaoli, & Zheng, Chuguang, “An extrapolation method for boundary conditions in lattice Boltzmann method”, Phys. Fluids, Vol. 14(6), pp. 2007-2010, 2002.
17.Gupta, Abhishek K., & Sharma, Atul, & Chhabra, Rajendra P., & Eswaran, Vinayak, “Two-dimensional steady flow of a power-law fluid past a square cylinder in a plane channel: Momentum and heat-transfer characteristics”, Ind. Eng. Chem. Res., Vol. 42, pp. 5674-5686, 2003.
18.He, Xiaoyi, & Luo, Li-Shi, “Lattice Boltzmann model for the incompressible Navier-Stokes equation”, J. Stat. Phys., Vol. 88(3/4), pp. 927-944, 1997.
19.He, Xiaoyi, & Luo, Li-Shi, & Dembo, Micah, “Some progress in lattice Boltzmann method. Part1. Nonuniform mesh grids”, J. Comput. Physics, Vol. 129(2), pp. 357-363, 1996.
20.Higuera, F. J., & Jiménez, J., “Boltzmann approach to lattice gas simulations”, Europhys. Lett., Vol. 9(7), pp. 663-668, 1989.
21.Higuera, F. J., & Succi, S., & Benzi, R., “Lattice gas dynamics with enhanced collisions”, Europhys. Lett., Vol. 9(4), pp. 345-349, 1989.
22.Hou, Shuling, & Zou, Qisu, “Simulation of cavity flow by the lattice Boltzmann method” , J. Comput. Phys., Vol. 118, pp. 329-347, 1995.
23.Huang, Kerson, “Statistical mechanics”, John Wiley & Sons, 1987.
24.Inamuro, Takaji, & Yoshino, Masato, & Ogino, Fumimaru, “A non-slip condition for lattice Boltzmann simulattion”, Phys. Fluids, Vol. 7(12), pp. 2928-2930, 1995.
25.Incropera, Frank P., & DeWitt, David P., “Fundamentals of heat and mass transfer”, John Wiley & Sons, 2002.
26.Lim, C.Y., & Shu, C., & Niu, X. D., & Chew, Y.T., “Application of lattice Boltzmann model to simulate microchannel flows”, Physics of Fluids, Vol. 14(7), pp. 2299-2308, 2002.
27.M. Breuer, J. Bernsdorf, &T. Zeiser, F. Durst, “Accurate computations of the laminar flow past a square cylinderbased on two different methods: lattice-Boltzmann and finite-volume”., 1999
28.McNamara, Guy R., & Zanetti, Gianluigi, “Use of the Boltzmann equation to simulate lattice-gas automata”, Physical Review Letters, Vol. 61(20), pp. 2332-2335, 1988.
29.Mei, Renwei, & Luo, Li-Shi, “An accurate curved boundary treatment in the lattice Boltzmann method”, J. Comput. Phys., Vol. 155, pp. 307-330, 1999.
30.Munson, Bruce R., & Young, Donald F., & Okiishi, Theodore H., “Fundamentals of fluid mechanics”, Wiley, New York, 1998.
31.Noble, David R., & Chen, Shiyi, & Georgiadis, John G.., “A consistent hydrodynamic boundary condition for the lattice Boltzmann method”, Phys. Fluids, Vol. 7(1), pp. 203-209, 1995.
32.Qian, Y. H., & d’Humiéres, D., & Lallemand, P., “Lattice BGK models for Navier-Stokes equation”, Europhy. Lett., Vol. 17(6), pp. 479-484, 1992.
33.Shih-Kai Chien, & Hsin-Yi Lai, “A numerical study of 3D flow in serpentine channel”, Proceedings, 7th International Symposium on Heat Transfer, Beijing, China.
34.Shing-Cheng Chang, Yin-Sung Hsu, and Chieh-Li Chen” Lattice Boltzmann simulation of fluid flows with fractal geometry: An unknown-index algorithm”, Journal of the Chinese Society of Mechanical Engineers, Vol.32, No.6, pp.523~531(2011)
35.Shu, C., & Niu, X. D., & Chew, Y. T., “Taylor-series expansion and least-square-based lattice Boltzmann model: Two dimensional formulational and its application”, Phys. Rev. E, Vol. 65, pp. 036708, 2002.
36.Skordos, P. A., “Initial and boundary conditions for the lattice Boltzmann method”, Phys. Rev. E, Vol. 48(6), pp. 4823-4842, 1993.
37.Succi, S., “The lattice Boltzmann equation for fluid dynamics and beyond”, Oxford university press, New York, 2001.
38.Succi, S., & Vergassola, M., & Benzi, R., “Lattice Boltzmann scheme for two-dimensional magnetohydrodynamics”, Phys. Rev. A, Vol. 43(8), pp. 4521-4524, 2001.
39.Tzu-Hsiang Yen, & Jenn-Kun Kuo, & Shih-Kai Chien, & Chao-Kuang Chen, “A simulation of 3D fluid flow in serpentine channel by LBM”, 中國機械工程學會第二十四屆全國學術研討會論文集 論文編號:(A17-0028).
40.Youngseuk Keehm, & Tapan Mukerji, & Amos Nur, “Computational rock physics at the pore scale: transport properties and diagenesis in realistic pore geometries”, The Leading Edge, Vol. 20(2), pp. 180-183, 2001.
41.Ziegler, D. P., “Boundary conditions for lattice Boltzmann simulation”, J. Stat. Phys., Vol. 71, pp. 1171-1177, 1993.
42.Zou, Qisu, & He, Xiaoyi, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Phys. Fluids, Vol. 9(6), pp. 1591-1598, 1997.
43.Zovatto, Luigino, & Pedrizzetti, Gianni, “Flow about a cylinder between parallel walls”, J. Fluid Mech., Vol. 440, pp. 1-25, 2001.
44.王竹溪,「統計物理學導論」,凡異出版社,1985。
45.王興永、索麗生、劉德有,程永光,「Lattice Boltzmann Method方法理論和應用的新進展」,河海大學學報(自然科學版)第30卷第6期,2002。
46.王禮祥,「橢圓柱管管流泊肅葉公式的簡明推導」,大學物理,1997第2期。
47.何雅玲、王勇、李慶,「格子Boltzmann方法的原理及應用(Lattice Boltzmann Method: Theory and Applications) 」,科學出版社,2009。
48.汪志誠,「熱力學與統計物理」,凡異出版社,1996。
49.吳大猷,「理論物理-熱力學、氣體運動及統計力學」,聯經出版社,1979。
50.祝玉學、趙學龍譯,「物理系統的元胞自動機模擬」,北京清華大學出版社,2003。
51.胡寬裕,「晶格波茲曼法於複雜幾何邊界之應用」,國立清華大學碩士論文,2003。
52.孫私于,「應用晶格波茲曼法與場協同理於流過具障礙物之渠道熱流分析」,國立成功大學碩士論文,2006。
53.康秀英、劉大禾、周靜、金永娟,「晶格Boltzmann方法模擬流體在三維圓管的流場」,北京師範大學學報(自然科學版),第03期,2006。
54.郭照立,「模擬不可壓縮流體流動的格子Boltzmann方法研究」,華中理工大學博士論文,2000。
55.郭照立、鄭楚光,「格子Boltzmann方法的原理及應用(Theory and Applications of Lattice Boltzmaan Method) 」,科學出版社,2009。
56.張靚妍,「以晶格波茲曼法模擬液滴衝擊平板之變形過程」,國立中正大學碩士論文,2002。
57.廖全、李隆鍵、崔文智,「不可壓縮流體周期性流動格子波爾茲曼的邊界處理,重慶大學學報,第33卷第12期,2010。
58.簡士凱,「晶格波茲曼算則模擬三維蛇型渠道流動特性研究」,國立成功大學碩士論文,2007。
59.顏子翔,「應用晶格波茲曼法與場協同理論於不同阻礙物之背向階梯管道熱流分析」,國立成功大學博士論文,2006。