| 研究生: |
游茜茹 Yu, Chien-Ru |
|---|---|
| 論文名稱: |
一維甲烷/一氧化碳/氫對沖流預混火焰之非平衡不可逆性分析 Nonequilibrium irreversibility analysis for one-dimensional CH4/CO/H2 counterflow premixed flames |
| 指導教授: |
吳志勇
Wu, Chih-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 可用能損失 、熵 、不可逆性 、對沖流 |
| 外文關鍵詞: | Exergy loss, Entropy, Irreversibility, Counterflow |
| 相關次數: | 點閱:101 下載:28 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以CHEMKIN PRO OPPDIF Package耦合聖地牙哥反應機制以甲烷、甲烷/一氧化碳/氫氣混合燃料之預混火焰進行一維對沖流燃燒下,黏性消散、熱傳導、質量擴散與化學可用能損失分析,並詳細探討各化學反應所產生之可用能損失。最後建立火焰厚度與總可用能損失之經驗公式與層流火焰速度及化學反應所產生之可用能損失關係。藉由改變初始條件可發現,當氣體初始溫度上升,熱傳導所產生之可用能損失降低,化學反應所產生之可用能損失提升,總可用能損失呈現上升趨勢。當環境壓力提升,質量擴散所產生之可用能損失隨著氣體密度上升而有明顯上升。貧油、化學當量及富油燃燒下隨拉伸率提升會有不同現象,貧油燃燒下,質量擴散與熱傳導產生之可用能損失皆隨拉伸率上升而上升;化學當量下,質量擴散可用能損失下降,熱傳導產生之可用能損失仍維持上升;富油燃燒下,兩種效應產生之可用能損失皆隨拉伸率提升而下降。但不變的是,化學反應所產生之可用能損失在三種情形下皆隨拉伸率上升而下降。目前對此之推測結果為因拉伸率提升造成不完全燃燒所產生之一氧化碳上升緣故。不論一氧化碳佔燃料比、環境壓力與氣體初始溫度為何,R49(CH3+O<=>CH2O+H)及R1(H+O2<=>OH+O)總產生相當大的可用能損失,R33(HCO+O2<=>CO+HO2)好發於甲烷佔比較低的情形。提升一氧化碳燃料比例,不見得代表與一氧化碳有關之化學反應會產生較大的可用能損失。藉由了解燃燒過程可用能損失,給予未來可用能應用及永續能源初步架構。
The irreversibility induced by viscous dissipation, mass diffusion, heat conduction and chemical reaction in CH4/CO/H2/air flame was studied using the 1-D counterflow flame numerical model coupled with the San Diego mechanism. The irreversibility caused by mass diffusion increased because of the increased gas density; the irreversibility caused by heat conduction decreased due to the increased initial gas temperature. The effect of strain rate in irreversibility generation differed from different equivalence ratio. For fuel-lean and stochiometric cases, the irreversibility caused by heat conduction always increased along increasing strain rate. However, for fuel-rich one, the irreversibility caused by heat conduction and mass diffusion usually decreased with rising strain rate. The only common characteristic was that the chemical-induced irreversibility was inversely proportional to strain rate regardless of the equivalence ratio. Irreversibility caused by chemical reaction was also studied. R49(CH3+O<=>CH2O+H) and R1(H+O2<=>OH+O) generated considerable irreversibility in all conditions. The irreversibility caused by each chemical reaction should not only consider the reaction rate but ponder the chemical potential. Finally, two empirical formulas were proposed in the present study. The overall total irreversibility can be estimated based on the flame thickness, and the chemical-induced irreversibility can be obtained according to the flame velocity.
1. Turns, S.R., An Introduction to Combustion: Concepts and Applications. 2012: McGraw-Hill.
2. Borgnakke, C.S.R.E., Borgnakke's Fundamentals of thermodynamics. 2017.
3. Dincer, I. and Rosen, M.A., Chapter 2 - Exergy and Energy Analyses, in Exergy (Second Edition), I. Dincer and M.A. Rosen, Editors. 2013, Elsevier. p. 21-30.
4. Zhang, J., Zhong, A., Huang, Z., and Han, D., Second-Law Thermodynamic Analysis in Premixed Flames of Ammonia and Hydrogen Binary Fuels, J Eng Gas Turbine Power. 141(2019).
5. Wu, C.-Y., Yu, W.-C., and Cheng, C.-C., Characteristics of Dimethyl Ether Oxidation in a Preheated Pt-γ-Al2O3 Catalytic Reactor, Combustion Science and Technology. 193(2021).2553-2572.
6. Liu, Y., Zhang, J., Ju, D., Huang, Z., and Han, D., Analysis of exergy losses in laminar premixed flames of methane/hydrogen blends, Int. J. Hydrog. Energy. 44(2019).24043-24053.
7. Zhang, J., Han, D., and Huang, Z., Second-law thermodynamic analysis for premixed hydrogen flames with diluents of argon/nitrogen/carbon dioxide, Int. J. Hydrog. Energy. 44(2019).5020-5029.
8. Acampora, L. and Marra, F.S., Second law thermodynamic analysis of syngas premixed flames, Int. J. Hydrog. Energy. 45(2020).12185-12202.
9. Liu, Y., Zhang, J., Ju, D., Shi, L., and Han, D., Second-law thermodynamic analysis on non-premixed counterflow methane flames with hydrogen addition, J. Therm. Anal. Calorim. 139(2020).2577-2583.
10. Liu, Y., Chen, S., Yang, B., Liu, K., and Zheng, C., First and second thermodynamic-law comparison of biogas MILD oxy-fuel combustion moderated by CO2 or H2O, Energy Conversion and Management. 106(2015).625-634.
11. Jiang, D., Yang, W., and Teng, J., Entropy generation analysis of fuel lean premixed CO/H2/air flames, Int. J. Hydrog. Energy. 40(2015).5210-5220.
12. Wang, W., Zuo, Z., Liu, J., and Yang, W., Entropy generation analysis of fuel premixed CH4/H2/air flames using multistep kinetics, Int. J. Hydrog. Energy. 41(2016).20744-20752.
13. Zuo, W., Zhang, Y., Li, J., Li, Q., and He, Z., A modified micro reactor fueled with hydrogen for reducing entropy generation, Int. J. Hydrog. Energy. 44(2019).27984-27994.
14. Datta, A., Effects of gravity on structure and entropy generation of confined laminar diffusion flames, International Journal of Thermal Sciences. 44(2005).429-440.
15. Miller, J.A., Kee, R.J., and Westbrook, C.K., Chemical Kinetics and Combustion Modeling, Annual Review of Physical Chemistry. 41(1990).345-387.
16. Design, R., Chemkin Theory Manual 17.0(15151). (2015).
17. Law, C.K., Combustion Physics. 2006, Cambridge: Cambridge University Press.
18. San Diego Mechanism. (2016).
19. Pizzuti, L., Martins, C.A., dos Santos, L.R., and Guerra, D.R.S., Laminar Burning Velocity of Methane/Air Mixtures and Flame Propagation Speed Close to the Chamber Wall, Energy Procedia. 120(2017).126-133.
20. Dirrenberger, P., Le Gall, H., Bounaceur, R., Herbinet, O., Glaude, P.-A., Konnov, A., and Battin-Leclerc, F., Measurements of Laminar Flame Velocity for Components of Natural Gas, Energy & Fuels. 25(2011).3875-3884.
21. Gu, X.J., Haq, M.Z., Lawes, M., and Woolley, R., Laminar burning velocity and Markstein lengths of methane–air mixtures, Combust Flame. 121(2000).41-58.
22. Hassan, M.I., Aung, K.T., and Faeth, G.M., Measured and predicted properties of laminar premixed methane/air flames at various pressures, Combust Flame. 115(1998).539-550.
23. Lowry, W., de Vries, J., Krejci, M., Petersen, E., Serinyel, Z., Metcalfe, W., Curran, H., and Bourque, G. Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures. in ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010.
24. Park, O., Veloo, P.S., Liu, N., and Egolfopoulos, F.N., Combustion characteristics of alternative gaseous fuels, Proceedings of the Combustion Institute. 33(2011).887-894.
25. Rozenchan, G., Zhu, D.L., Law, C.K., and Tse, S.D., Outward propagation, burning velocities, and chemical effects of methane flames up to 60 ATM, Proceedings of the Combustion Institute. 29(2002).1461-1470.
26. Vagelopoulos, C.M. and Egolfopoulos, F.N., Direct experimental determination of laminar flame speeds, Symposium (International) on Combustion. 27(1998).513-519.
27. Dincer, I. and Rosen, M.A., Chapter 3 - Chemical Exergy, in Exergy (Second Edition), I. Dincer and M.A. Rosen, Editors. 2013, Elsevier. p. 31-49.
28. Wu, C.Y., Chao, Y.C., Cheng, T.S., Chen, C.P., and Ho, C.T., Effects of CO addition on the characteristics of laminar premixed CH4/air opposed-jet flames, Combust Flame. 156(2009).362-373.