| 研究生: |
莊翔智 Juang, Shiang-Jr |
|---|---|
| 論文名稱: |
離心泵設計參數與五軸加工規劃之探討 The Investigation of Design Parameters and Five-axis Machining Planning for Centrifugal Pump |
| 指導教授: |
洪振益
Hung, Chen-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 流場參數 、離心泵 、五軸加工 、加工規劃 |
| 外文關鍵詞: | machining planning, centrifugal pump, fluid parameters, five-axis machining |
| 相關次數: | 點閱:133 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
離心泵葉輪為三維扭轉曲面,其流體沿著曲面來改變流向或改變流體速度與壓力,促使能量提昇。而干涉程度大、形狀複雜、葉片外廓建構不易、多軸加工困難與複雜的流場特性,涵蓋著流場分析與五軸加工技術;同時,其相關技術亦為國防科技發展的關鍵技術。國內技術之獲得相當昂貴且不易。如何將離心式葉輪精確地分析與加工設計,突破瓶頸並有效提昇其性能,顯然是一項重要的課題。
本研究有鑑於此,將創成加工理念的體積掃掠法導入葉輪設計之前,建構流體葉輪外形,建立加工方法並討論之;同時以解析式三次仿線與數值曲線有理式B仿線分別合成葉片空間曲線,將曲線參數、流場參數與加工參數作結合,分別比較不同的曲線葉形對流場效能之影響;並針對第四軸旋轉角與葉頂間隙對流場的影響加以討論。加工規劃方面,本研究針對不同曲線的加工運動分析做討論,並以扇形高度的概念來規劃刀具路徑;以向量幾何研判加工路徑是否與葉片干涉;以主曲率半徑決定刀具直徑的選取與葉片表面過切與否。最後對加工規劃結果之合理性做一討論。
The centrifugal impeller is a three-dimensional twisted surface. The energy is generated by velocity and pressure converting. The centrifugal impeller has some hard works, such as the interference of machining, the complex shape of blades, the difficulty in setting up blades and multi-axial machining, and the complicated fluid characteristics. That includes the flow simulation method and five-axial machining technology, and the related technique is also the key point of national defense industry. It is difficult and expensive to get the technique in Taiwan. Obviously, it is an important business that how to design and to analyze the performance of centrifugal pump accurately. There has many obstacles to overcome.
Therefore, the volume swept method based on the generated machining concept is advanced by the design of centrifugal impeller in this research. And it is discussed that how to create the profile of centrifugal impeller and machining method. The analytical spline and the rational B-spline will be introduced for the space-curve construction and curve parameters, fluid parameters, and machining parameters will be combined. Then it is found that the influence of curve on the performance of flow field. It is discussed that the fluid characteristics of tip clearance, the influence of tip clearance, and the twisted angle of impeller blades on the performance of flow field. Machining kinetic analysis of different curve is discussed in this research, and planning of tool path was worked by the concept of scallop height. At the same time, this research uses vector analysis to determine that the possibility of collision, and detects the possibility of over-cutting by the principal curvature. Finally, the performance of machining planning was estimated in this research.
[1]蘇聖斌、陳世雄, “軸流泵葉輪與導葉之設計分析,” 中國機械工程學會第十三屆全國學術研討會論文集, pp. 298-306, 1996年11月.
[2]林志遠, “軸流風扇的性能提昇設計與測試,” 成功大學航空太空研究所碩士論文, 1997年7月.
[3]Pierret, S., “Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network,” Transactions of the ASME Journal of Turbomachinery, Vol. 121, 1998.
[4]林博正、杜黎蓉與吳建鋒, ”NURBS合成與凸輪機構之影響,” 中國機械工程學會, 第十六屆學術研討會, 1999.
[5]Raj, D. and Swim, W. B.,”Measurement of the Mean Flow Velocity and Fluctuations at the Exit of a F-C Centrifugal Fan Rotor”,Journal of Engineering for Power,Vol. 103 no. 2, pp. 393-399,1981.
[6]Rai, M. M., ”Navier-Stokes Simulations of Rotor-Stator Interaction Using Patched and Overlaid Grids,” Journal of Propulsion and Power, Vol. 3 no. 5, pp. 387-396, 1987.
[7]Zhang, M. J., Pomfret, M. J., and Wong, C. M., “Three-Dimensional Viscous Flow Simulation in a Backswept Centrifugal Impeller at the Design Point,” Computers & Fluids, Vol. 25, No. 5, pp. 497-507, 1996.
[8]Su, S. P., Chen, S. H., Lee, L. C., and Hwang, T. Y., “The Use of CFD in Turbomachinery Applications,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol. 32, No. 1, pp. 1-24, 2000.
[9]黃福居, ”全三維軸流風扇葉片最佳化設計,” 成功大學機械工程研究所碩士論文, 2001.
[10]S.C.M. Yu., B.T.H. Ng., W.K. Chan, L.P. Chau, “The Flow Patterns within the Impeller Passages of a Centrifugal Blood Pump Model,” Medical Engineering & Physics, 22, pp. 381-393, 2000.
[11]M. Cudina, “Detection of Cavitation Phenomenon in a Centrifugal Pump Using Audible Sound,” Mechanical Systems and Signal Processing, 17(6), pp. 1335-1347, 2003.
[12]Al-Zubaidy, S. N., “A Proposed Design Package for Centrifugal Impellers,” Computers & Structures, Vol. 55, No. 2, pp. 347-356, 1995.
[13]Chen, S. L., and Wang, W. T., “Computer Aided Manufacturing Technologies for Centrifugal Compressor Impellers,” Journal of Materials Processing Technology, Vol. 115, Issue. 3, pp. 284-293, 2001.
[14]R.S. Lin, Y. Koren, “Efficient Tool-Path Planning for Machining Free-form Surfaces,” Transactions of the ASME Journal of Engineering for Industry, Vol. 118, pp. 20-28, Feb. 1996.
[15]Morishige, K., and Takeuchi, Y., “5-Axis Control Rough Cutting of an Impeller with Efficiency and Accuracy,” IEEE Paper Robotics and Automation, Vol. 2, pp. 1241-1246, 1997.
[16]莊禮彰, “離心式壓縮機葉輪五軸加工規劃, ” 台灣大學機械工程研究所博士論文, 2003.
[17]A. T. Sayers, “Hydraulic and Compressible Flow Turbomachines,” McGraw-Hill, pp. 37-40, 1992.
[18]Davidov, T., “General Idea of Generating Mechanism and its Application to Bevel Gear,” Mechanism and Machine Theory, Vol. 33, pp. 505-515, 1998.
[19]邱盟勝, “離心泵葉片五軸加工規劃與流場優化,” 成功大學機械工程研究所碩士論文, 2004.
[20]吳坤憲, “結合創成加工與流場計算之離心泵葉片優化設計,” 成功大學機械工程研究所碩士論文, 2002.
[21]黃彥博, “應用有理樣線法於離心流葉片之優化設計,” 成功大學機械工程研究所碩士論文, 2003.
[22]Launder, B. E., and Spalding, D. B., ”The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
[23]K. Morishige, Y. Takeuchi, “5-Axis Control Rough Cutting of an Impeller with Efficiency and Accuracy,” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, pp. 1241-1246, 1997.
[24]Stoker, J.J., “Differential Geometry,” Wiley-Interscience, New York, 1969.