簡易檢索 / 詳目顯示

研究生: 邱奕騰
Chiu, Yi-Teng
論文名稱: 低升溫速率熱處理由Boehmite製作片狀氧化鋁粉末之製程特性
Processing characteristics of lower heating rate thermal treatments for preparing boehmite-derived flake alumina powders
指導教授: 向性一
Hsiang, Hsing-I
共同指導教授: 顏富士
Yen, Fu-Su
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 59
中文關鍵詞: 片狀粉末氧化鋁熱處理順購延伸特性假型現象
外文關鍵詞: flake-like powder, alumina, heat treatment, topotatic, pseudomorphism
相關次數: 點閱:36下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於二維奈米材料有極大的重要性於工業上諸多領域。本文簡介以低升溫速率熱處理,可由單水鋁石 (Boehmite,AlO(OH),或Al2O3‧H2O) 獲得奈米級片狀氧化鋁粉末的過程。單水鋁石屬於氧化鋁水合物的一種,鋁氧氫元素結合排列成層狀結構,晶體出現完美的{010}節理面。由單水鋁石相變之過渡相氧化鋁具順構延伸特性(Topotactic transformation),因此單水鋁石經熱處理相變成同為層狀結構的過渡相γ-Al2O3晶粒,其有{110}節理面。本實驗原料單水鋁石粉末呈2維奈米疊層狀,推測可藉由熱處理過程中,造成其晶粒沿節理面剝開,生成片狀氧化鋁粒體粉末。
    本研究將單水鋁石以每分鐘0.5、1.0、及2.0oC升溫速率加熱,並以淬冷、持溫10、20分鐘進行熱處理。觀察的製程特性包含單水鋁石的失重、比表面積,及以XRD量測之單水鋁石消失量與γ-Al2O3生成量。失重包含2.1wt%吸附水及15wt%結晶水。單水鋁石比表面積的增加以40m2/g為界分兩段,先因其脫去結晶水產生的蒸汽壓力使BET上升至40m2/g,再加入結構重整之應力達BET值100m2/g。於XRD量測之Boehmite殘餘量與DTA吸熱峰溫度範圍近乎吻合,γ-Al2O3生成量則由BET值40m2/g開始。當Boehmite含量為0%時,γ-Al2O3生成完畢。單水鋁石加熱至DTA吸熱峰結束溫度,其失重約15%、BET值超過100m2/g及γ-Al2O3生成量100%。亦即生成之γ-Al2O3還帶有2%羥基。
    以疊層狀單水鋁石為原料所得的片狀氧化鋁粉末,其片體截面積與原料單水鋁石的{010}面一致。雖最終所得粉末為過渡相γ-Al2O3,但外形不變,出現假型現象(Pseudomorphism)。γ-Al2O3之片體厚度可薄至約5nm,其比表面積超過100m2/g。疊層狀單水鋁石之剝片機制包含其釋出結晶水所產生之蒸汽壓力,及相變成γ-Al2O3下結構重整產生的應變應力。
    關鍵詞:片狀粉末、氧化鋁、熱處理、順購延伸特性、假型現象。

    Summary
    Due to the importance of 2-dimensional nanomaterials, the research aims to fabricate boehmite-derived flake alumina powders with lower heating rate thermal treatments. Boehmite is a kind of alumina hydrates. Because of the layered structure, boehmite has a perfect cleavage {010}. Boehmite transforms into stable α-Al2O3 via the sequence of metastable transition aluminum oxide: AlOOH → γ → δ → θ → α-Al2O3. The transformation of boehmite to γ-Al2O3 is topotatic. Hence, γ-Al2O3 also belongs to layered structure with a perfect cleavage {110}. In this study, boehmite dehydration caused vapor stress and alumina migration resulted in strain stress are speculated the driving force that boehmite delaminates.
    Heat treatments of boehmite use three different heating rates: 0.5, 1, and 2℃/min. TEM photos, specific surface, and geometric evaluation are the methods observing the cleavage {010}. Examining three different experimental data, in-cluding weight loss of boehmite, the residual amount of boehmite, and the for-mation of γ-Al2O3 realizes the driving force of delamination.
    The boehmite-derived flake alumina powders have the same cross-sectional surface with boehmite. Although the flake alumina powders end up in γ-phase, it has the phenomenon called ‘pseudomorphism’ that γ-Al2O3 has the same ap-pearance as the boehmite cleavage {010}. The final thickness of γ-Al2O3 is low to approximately 5 nanometers, and its’ value of specific surface surpasses 100m2/g.
    Keyword: flake-like powder, alumina, heat treatment, topotatic and pseudo-morphsim.

    中文摘要 i Processing characteristics of lower heating rate thermal treatments for preparing boehmite-derived flake alumina powders ii 致謝 xi 目錄 xii 表目錄 xv 圖目錄 xvi 第一章 緒論 1 1-1 前言與研究動機 1 1-1-1:Boehmite  γ-Al2O3的工業粉末之應用與重要性 1 1-1-2:片狀礦物粉末之應用與其重要性 2 1-1-3:Boehmite γ-Al2O3過程的結晶水釋出可否用來產生片狀γ-Al2O3粉末 3 1-2 研究目的 3 第二章 理論基礎與前人研究 4 2.1 礦物學 4 2.1.1 Boehmite 4 2.1.2 γ-Al2O3 5 2.2 Boehmite熱失重行為與相變機制 5 2.2.1 Boehmite粉末吸附水之脫去 5 2.2.2 Boehmite粉末由氫轉移至結晶水釋出與結構崩解過程 6 2.2.3鋁遷移 7 2.3 由Boehmite相變而成的γ-Al2O3特點 7 第三章 實驗方法及步驟 15 3-1 實驗原料 15 3-2 實驗設計 16 3-3 樣品準備和熱處理 16 3-4 特性分析 18 3-3-1熱性質分析:熱差分析(DTA)和熱重分析(TGA) 18 3-3-2 粉末結晶相鑑定和定量分析:X射線繞射分析(XRD) 18 3-3-3 比表面積分析:比表面積分析儀(BET) 18 3-3-4 顯微結構分析:穿透式電子顯微鏡(TEM) 19 第四章 結果與討論 23 4-1 DTA/TGA 23 4-2 熱處理 29 4-2-1 熱處理溫度與失重 29 4-2-2 熱處理溫度與比表面積 33 4-2-3 熱處理溫度與相變(XRD) 38 4-3 失重的影響 42 4-3-1 失重與boehmite-XRD減量關係 42 4-3-2 失重與比表面積(BET) 42 4-4 相變與比表面積(BET) 46 4-5 比表面積與剝片 48 4-5-1粒體外貌 48 4-5-2剝片厚度 48 4-6 剝片機制 52 第五章 結論 53 參考文獻 54 APPENDIX 58 附錄一:無水高純氫氧化鋁產品規格 58 附錄二:以計算BET值算片體粉末厚度(假設為圓柱體計算) 59

    [1] Ewing, F., 1935. The Crystal Structure of Lepidocrocite. The Journal of Chemical Physics, 3(7), pp.420-424.
    [2] Mathieu, Y., Lebeau, B. and Valtchev, V., 2007. Control of the Morphology and Particle Size of Boehmite Nanoparticles Synthesized under Hydrothermal Conditions. Langmuir, 23(18), pp.9435-9442.
    [3] Zhu, H., Gao, X., Song, D., Bai, Y., Ringer, S., Gao, Z., Xi, Y., Martens, W., Riches, J. and Frost, R., 2004. Growth of Boehmite Nanofibers by Assembling Nanoparticles with Surfactant Micelles. The Journal of Physical Chemistry B, 108(14), pp.4245-4247.
    [4] Wang, Z., Tian, Y., Fan, H., Gong, J., Yang, S., Ma, J. and Xu, J., 2014. Facile seed-assisted hydrothermal fabrication of γ-AlOOH nanoflake films with su-perhydrophobicity. New Journal of Chemistry, 38(3), p.1321.
    [5] Wu, X., Zhang, B. and Hu, Z., 2013. Large-scale and additive-free hydro-thermal synthesis of lamellar morphology boehmite. Powder Technology, 239, pp.155-161.
    [6] Lippens, B. and de Boer, J., 1964. Study of phase transformations during cal-cination of aluminum hydroxides by selected area electron diffraction. Acta Crystallographica, 17(10), pp.1312-1321.
    [7] Yanagida, H. and Yamaguchi, G., 1964. Thermal Effects on the Lattices of η- and γ-Aluminum Oxide. Bulletin of the Chemical Society of Japan, 37(8), pp.1229-1231.
    [8] Vidal, O. and Dubacq, B., 2009. Thermodynamic modelling of clay dehydra-tion, stability and compositional evolution with temperature, pressure and H2O activity. Geochimica et Cosmochimica Acta, 73(21), pp.6544-6564.
    [9] Paglia, G., Buckley, C., Rohl, A., Hart, R., Winter, K., Studer, A., Hunter, B. and Hanna, J., 2004. Boehmite Derived γ-Alumina System. Part 1. Structural Evolution with Temperature, with the Identification and Structural Determina-tion of a New Transition Phase, γ′-Alumina. ChemInform, 35(14).
    [10] Paglia, G., Buckley, C., Udovic, T., Rohl, A., Jones, F., Maitland, C. and Connolly, J., 2004. Boehmite-Derived γ-Alumina System. 2. Consideration of Hydrogen and Surface Effects. Chemistry of Materials, 16(10), pp.1914-1923.
    [11] Krokidis, X., Raybaud, P., Gobichon, A., Rebours, B., Euzen, P. and Toulhoat, H., 2001. Theoretical Study of the Dehydration Process of Boehmite to γ-Alumina. The Journal of Physical Chemistry B, 105(22), pp.5121-5130.
    [12] Santos, P., Coelho, A., Santos, H. and Kiyohara, P., 2009. Hydrothermal synthesis of well-crystallised boehmite crystals of various shapes. Materials Research, 12(4), pp.437-445.
    [13] Hill, R., 1981. Hydrogen Atoms in Boehmite: A Single Crystal X-Ray Dif-fraction and Molecular Orbital Study. Clays and Clay Minerals, 29(6), pp.435-445.
    [14] Sahama, T., Lehtinen, M. and Rehtijrvi, P., 1973. Natural boehmite single crystals from Ceylon. Contributions to Mineralogy and Petrology, 39(2), pp.171-174.
    [15] Xu, B. and Smith, P., 2012. Dehydration kinetics of boehmite in the temper-ature range 723–873K. Thermochimica Acta, 531, pp.46-53.
    [16] Wilson, S., 1979. The dehydration of boehmite, γ-AlOOH, to γ-Al2O3. Journal of Solid State Chemistry, 30(2), pp.247-255.
    [17] Sohlberg, K., Pennycook, S. and Pantelides, S., 1999. Hydrogen and the Structure of the Transition Aluminas. Journal of the American Chemical Soci-ety, 121(33), pp.7493-7499.
    [18] Decleer, J., 2010. TG/XRD/Sem Study of the Conversion of Gibbsite to (Pseudo) Boehmite. Bulletin des Sociétés Chimiques Belges, 98(7), pp.449-462.
    [19] Cai, S., Rashkeev, S., Pantelides, S. and Sohlberg, K., 2003. Phase transfor-mation mechanism between γ- and θ-alumina. Physical Review B, 67(22).
    [20] Karouia, F., Boualleg, M., Digne, M. and Alphonse, P., 2016. The impact of nanocrystallite size and shape on phase transformation: Application to the boehmite/alumina transformation. Advanced Powder Technology, 27(4), pp.1814-1820.
    [21] Bokhimi, X., Toledo-Antonio, J., Guzmán-Castillo, M., Mar-Mar, B., Her-nández-Beltrán, F. and Navarrete, J., 2001. Dependence of Boehmite Thermal Evolution on Its Atom Bond Lengths and Crystallite Size. Journal of Solid State Chemistry, 161(2), pp.319-326.
    [22] SOLED, S., 1983. $γ-Al2O3 viewed as a defect oxyhydroxide. Journal of Catalysis, 81(1), pp.252-257.
    [23] Fankhänel, J., Silbernagl, D., Ghasem Zadeh Khorasani, M., Daum, B., Kempe, A., Sturm, H. and Rolfes, R., 2016. Mechanical Properties of Boehm-ite Evaluated by Atomic Force Microscopy Experiments and Molecular Dy-namic Finite Element Simulations. Journal of Nanomaterials, pp.1-13.
    [24] Rudolph, M., Motylenko, M. and Rafaja, D., 2019. Structure model of γ-Al2O3 based on planar defects. IUCrJ, 6(1), pp.116-127.
    [25] Chen, G., Hao, G., Guo, T., Song, M. and Zhang, B., 2004. Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/clay nanocompo-sites. Journal of Applied Polymer Science, 93(2), pp.655-661.
    [26] An, A., Lu, A., Sun, Q., Wang, J. and Li, W., 2011. Gold nanoparticles stabi-lized by a flake-like Al2O3 support. Gold Bulletin, 44(4), pp.217-222.
    [27] Cao, M., Yan, Q., Li, X. and Mi, Y., 2014. Effect of plate-like alumina on the properties of alumina ceramics prepared by gel-casting. Materials Science and Engineering: A, 589, pp.97-100.
    [28] Farhan, A., 2020. Effect of Alumina Contents on the Some Mechanical Prop-erties of Alumina (Al2O3) Reinforced Polymer Composites. Neuroquantology, 18(5), pp.35-42.
    [29] Jadhav, N., Vetter, C. and Gelling, V., 2019. Characterization and Electro-chemical Investigations of Polypyrrole/Aluminum Flake Composite Pigments on AA 2024-T3 Substrate. ECS Transactions, 41(15), pp.75-89.
    [30] Inoue, M., 1989. Alcohothermal Treatments of Gibbsite: Mechanisms for the Formation of Boehmite. Clays and Clay Minerals, 37(1), pp.71-80.
    [31] Liu, W., Ullah, B., Kuo, C. and Cai, X., 2019. Two-Dimensional Nano-materials-Based Polymer Composites: Fabrication and Energy Storage Appli-cations. Advances in Polymer Technology, pp.1-15.
    [32] Tan, C., Cao, X., Wu, X., He, Q., Yang, J., Zhang, X., Chen, J., Zhao, W., Han, S., Nam, G., Sindoro, M. and Zhang, H., 2017. Recent Advances in Ul-trathin Two-Dimensional Nanomaterials. Chemical Reviews, 117(9), pp.6225-6331.
    [33] Jung, Y., Zhou, Y. and Cha, J., 2016. ChemInform Abstract: Intercalation in Two-Dimensional Transition Metal Chalcogenides. ChemInform, 47(26).
    [34] Nicolosi, V., Chhowalla, M., Kanatzidis, M., Strano, M. and Coleman, J., 2013. Liquid Exfoliation of Layered Materials. Science, 340(6139), pp.1226419-1226419.
    [35] Singh, B., Jena, B., Bhattacharjee, S. and Besra, L., 2013. Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper. Surface and Coatings Technology, 232, pp.475-481.
    [36] Spitalsky, Z., Tasis, D., Papagelis, K. and Galiotis, C., 2010. Carbon nano-tube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 35(3), pp.357-401.
    [37] Bigg, D., 1979. Mechanical, thermal, and electrical properties of metal fi-ber-filled polymer composites. Polymer Engineering and Science, 19(16), pp.1188-1192.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE