| 研究生: |
林旻儀 Lin, Min-Yi |
|---|---|
| 論文名稱: |
研究寡突膠細胞分泌因子Thymosin beta-4和Tenascin-R對神經膠質瘤惡化之影響 Investigating oligodendrocyte releasing factors, Thymosin beta-4 and Tenascin-R, regulate glioma progression |
| 指導教授: |
王之彥
Wang, Chih-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 多形性膠質母細胞瘤 、寡突膠質細胞 、胼胝體浸潤 |
| 外文關鍵詞: | Glioblastoma multiforme, Oligodendrocytes, Infiltration of the corpus callosum |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多形性膠質母細胞瘤(Glioblastoma multiforme, GBM)是一種常見且高度惡性的腦瘤,被世界衛生組織(WHO)歸類為第四級,其特徵為快速生長與高度侵襲性。儘管接受了手術切除、化學治療等方式積極治療,GBM仍常復發,大多數患者在診斷後的12至18個月內死亡。有趣的是,GBM經常侵入如胼胝體(corpus callosum)與內囊(internal capsule)等富含髓鞘軸突與寡突膠質細胞(oligodendrocytes, OLs)的白質區域,但其偏好侵入白質的機制至今尚不清楚。由於腫瘤進展與微環境密切相關,包括發炎反應與缺氧狀態,OLs可能參與GBM向白質擴散的過程。在本研究中,我們透過活體電穿孔(in vivo electroporation, IVE)剔除三個腫瘤抑制基因Nf1、Tp53與Pten,建立一個侵入白質的GBM小鼠模型。我們證實IVE所產生的GBM細胞會沿著胼胝體遷移生長,並觀察到OLs出現在腦瘤組織中。另一方面,直接將小鼠膠瘤細胞株CT2A注射至大腦時,我們也發現OLs譜系細胞會被招募至腫瘤周邊區域,顯示GBM與OLs之間具有密切的關聯性。為了探討OLs分泌物是否具有促進腫瘤生長的功能,我們收集了初級OLs培養液的條件培養液(conditioned media, CM)。結果顯示,OL-CM促進CT2A細胞增生的效果優於來自星狀膠質細胞或神經元的CM。利用質譜分析與已知GBM單細胞基因表現資料,我們鑑定出在OL-CM中富集的兩種蛋白質:Tenascin-R(Tnr)與Thymosin beta-4(Tmsb4x)。當我們在OLs中剔除Tnr時,IVE-GBM在胼胝體的擴散更加劇烈,而剔除Tmsb4x則抑制了腫瘤的生長。然而,直接剔除CT2A細胞的Tnr或Tmsb4x基因,會使其增生能力均低於對照組,顯示OLs分泌物在GBM侵入白質的過程中具有重要角色。總結以上數據,我們的研究指出OLs分泌的Tnr可能對GBM在白質中的擴散具有抑制作用,而Tmsb4x則可能促進膠瘤的進展。本研究顯示OL的確參與調節腫瘤惡化進程,惟不同釋放因子有不同效果,故還需研究其他分子對GBM病理的影響。
Glioblastoma multiforme (GBM) is a common and highly malignant brain tumor classified as grade IV by the World Health Organization (WHO), characterized by rapid growth and aggressive invasiveness. Despite surgical resection, chemotherapy, and other treatments, GBM frequently recurs, and most patients die within 12 to 18 months of diagnosis. Interestingly, GBM often infiltrates white matter tracts such as the corpus callosum and internal capsule, which are rich in myelinated axons and oligodendrocytes (OLs). However, the mechanisms underlying this preferential invasion into white matter regions remain unclear. Since tumor progression is closely associated with the microenvironment, including inflammation and hypoxia, OLs may contribute to GBM infiltration into white matter. In this study, we established a white matter-invading GBM model by knocking out three tumor suppressor genes, Nf1, Tp53, and Pten, using in vivo electroporation (IVE). We confirmed that IVE-GBM cells migrated along the mouse corpus callosum and observed the presence of OLs within glioma tissues. In contrast, when we directly injected the mouse glioma cell line CT-2A into the brain, OL lineage cells were recruited to the tumor mass, suggesting a close relationship between glioma and OLs. To examine the pro-tumoral OL secretome, we collected conditioned media (CM) from primary OL cultures. OL-CM enhanced CT-2A cell growth more effectively than CM from astrocytes or neurons. Mass spectrometry analysis identified two proteins enriched in OL-CM: Tenascin-R (TNR) and Thymosin beta-4 (TMSB4X). Knockout of Tnr in OLs led to more aggressive IVE-GBM expansion across the corpus callosum, while Tmsb4x knockout suppressed tumor growth. When Tnr was deleted in oligodendrocytes (OLs), IVE-GBM spread more aggressively in the corpus callosum, whereas deletion of Tmsb4x inhibited tumor growth. When Tnr was deleted in oligodendrocytes (OLs), IVE-GBM spread more aggressively in the corpus callosum, whereas deletion of Tmsb4x inhibited tumor growth. However, direct deletion of the Tnr or Tmsb4x gene in CT2A cells reduced their proliferative capacity compared to the control group, suggesting that OL-derived secreted factors play a crucial role in GBM invasion into white matter. In summary, our findings suggest that Tnr secreted by oligodendrocytes may inhibit the spread of GBM within the white matter, whereas Tmsb4x may facilitate glioma progression. This study demonstrates that oligodendrocytes are indeed involved in regulating tumor progression; however, different secreted factors exert distinct effects, highlighting the need to investigate the roles of other molecules in GBM pathology.
Ahir, B. K., Engelhard, H. H., & Lakka, S. S. (2020). Tumor development and angiogenesis in adult brain tumor: glioblastoma. Molecular neurobiology, 57, 2461-2478.
Alvarez, J. I., Dodelet-Devillers, A., Kebir, H., Ifergan, I., Fabre, P. J., Terouz, S., Sabbagh, M., Wosik, K., Bourbonnière, L., & Bernard, M. (2011). The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science, 334(6063), 1727-1731.
Bauch, J., & Faissner, A. (2022). The extracellular matrix proteins tenascin-C and tenascin-R retard oligodendrocyte precursor maturation and myelin regeneration in a cuprizone-induced long-term demyelination animal model. Cells, 11(11), 1773.
Behnan, J., Finocchiaro, G., & Hanna, G. (2019). The landscape of the mesenchymal signature in brain tumours. Brain, 142(4), 847-866.
Belousov, A., Titov, S., Shved, N., Garbuz, M., Malykin, G., Gulaia, V., Kagansky, A., & Kumeiko, V. (2019). The extracellular matrix and biocompatible materials in glioblastoma treatment. Frontiers in bioengineering and biotechnology, 7, 341. https://pmc.ncbi.nlm.nih.gov/articles/PMC6877546/pdf/fbioe-07-00341.pdf
Bianco, S. (2014). Set up of different strategies to selectively target Glioblastoma Cells.
Blandin, A.-F., Noulet, F., Renner, G., Mercier, M.-C., Choulier, L., Vauchelles, R., Ronde, P., Carreiras, F., Etienne-Selloum, N., & Vereb, G. (2016). Glioma cell dispersion is driven by α5 integrin-mediated cell–matrix and cell–cell interactions. Cancer Letters, 376(2), 328-338.
Burger, P. C., Heinz, E. R., Shibata, T., & Kleihues, P. (1988). Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. Journal of neurosurgery, 68(5), 698-704.
Chelyshev, Y. A., Kabdesh, I. M., & Mukhamedshina, Y. O. (2022). Extracellular matrix in neural plasticity and regeneration. Cellular and molecular neurobiology, 42(3), 647-664.
Chen, Z., Feng, X., Herting, C. J., Garcia, V. A., Nie, K., Pong, W. W., Rasmussen, R., Dwivedi, B., Seby, S., & Wolf, S. A. (2017). Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Research, 77(9), 2266-2278.
Clancy, J. W., & D'Souza-Schorey, C. (2023). Tumor-derived extracellular vesicles: multifunctional entities in the tumor microenvironment. Annual Review of Pathology: Mechanisms of Disease, 18(1), 205-229.
Cuddapah, V. A., Robel, S., Watkins, S., & Sontheimer, H. (2014). A neurocentric perspective on glioma invasion. Nat Rev Neurosci, 15(7), 455-465. https://doi.org/10.1038/nrn3765
Cuddapah, V. A., Robel, S., Watkins, S., & Sontheimer, H. (2014). A neurocentric perspective on glioma invasion. Nature Reviews Neuroscience, 15(7), 455-465.
Cui, M., Gao, X., Chi, Y., Zhang, M., Lin, H., Chen, H., Sun, C., & Ma, X. (2021). Molecular alterations and their correlation with the survival of glioblastoma patients with corpus callosum involvement. Frontiers in Neuroscience, 15, 701426.
Curnis, F., Sacchi, A., & Corti, A. (2002). Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. The Journal of clinical investigation, 110(4), 475-482.
Duffau, H. (2022). White matter tracts and diffuse lower-grade gliomas: the pivotal role of myelin plasticity in the tumor pathogenesis, infiltration patterns, functional consequences and therapeutic management. Frontiers in Oncology, 12, 855587.
Eder, K., & Kalman, B. (2015). The dynamics of interactions among immune and glioblastoma cells. Neuromolecular medicine, 17(4), 335-352.
Fecci, P. E., Ochiai, H., Mitchell, D. A., Grossi, P. M., Sweeney, A. E., Archer, G. E., Cummings, T., Allison, J. P., Bigner, D. D., & Sampson, J. H. (2007). Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clinical cancer research, 13(7), 2158-2167.
Franco, S. J., & Müller, U. (2011). Extracellular matrix functions during neuronal migration and lamination in the mammalian central nervous system. Developmental neurobiology, 71(11), 889-900.
Fujiwara, S., Nakagawa, K., Harada, H., Nagato, S., Furukawa, K., Teraoka, M., Seno, T., Oka, K., Iwata, S., & Ohnishi, T. (2007). Silencing hypoxia-inducible factor-1α inhibits cell migration and invasion under hypoxic environment in malignant gliomas. International journal of oncology, 30(4), 793-802.
Galvao, R. P., Kasina, A., McNeill, R. S., Harbin, J. E., Foreman, O., Verhaak, R. G., Nishiyama, A., Miller, C. R., & Zong, H. (2014). Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process. Proceedings of the National Academy of Sciences, 111(40), E4214-E4223.
He, H., Fu, X., Liu, G., Wang, H., Zhong, W., Chen, B., & Xu, X. Glioblastoma-Associated Macrophages in Glioblastoma: From Function and Mechanism to the Therapeutic Advances.
Hide, T., Shibahara, I., & Kumabe, T. (2019). Novel concept of the border niche: Glioblastoma cells use oligodendrocytes progenitor cells (GAOs) and microglia to acquire stem cell-like features. Brain tumor pathology, 36, 63-73.
Horng, S., Therattil, A., Moyon, S., Gordon, A., Kim, K., Argaw, A. T., Hara, Y., Mariani, J. N., Sawai, S., & Flodby, P. (2017). Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. The Journal of clinical investigation, 127(8), 3136-3151.
Huang-Hobbs, E., Cheng, Y.-T., Ko, Y., Luna-Figueroa, E., Lozzi, B., Taylor, K. R., McDonald, M., He, P., Chen, H.-C., & Yang, Y. (2023). Remote neuronal activity drives glioma progression through SEMA4F. Nature, 619(7971), 844-850.
Jain, K. K. (2018). A critical overview of targeted therapies for glioblastoma. Frontiers in Oncology, 8, 419.
Jankowska, S., Lewandowska, M., Masztalewicz, M., Sagan, L., Nowacki, P., & Urasińska, E. (2021). Molecular classification of glioblastoma based on immunohistochemical expression of EGFR, PDGFRA, NF1, IDH1, p53 and PTEN proteins. Polish Journal of Pathology, 72(1), 1-10.
Jansson, L. C., & Åkerman, K. E. (2014). The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells. Journal of neural transmission, 121, 819-836.
Jiang, S.-H., Hu, L.-P., Wang, X., Li, J., & Zhang, Z.-G. (2020). Neurotransmitters: emerging targets in cancer. Oncogene, 39(3), 503-515.
Jögi, A., Øra, I., Nilsson, H., Lindeheim, Å., Makino, Y., Poellinger, L., Axelson, H., & Påhlman, S. (2002). Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proceedings of the National Academy of Sciences, 99(10), 7021-7026.
Kalebic, N., Gilardi, C., Stepien, B., Wilsch-Bräuninger, M., Long, K. R., Namba, T., Florio, M., Langen, B., Lombardot, B., & Shevchenko, A. (2019). Neocortical expansion due to increased proliferation of basal progenitors is linked to changes in their morphology. Cell stem cell, 24(4), 535-550. e539.
Lau, L. W., Cua, R., Keough, M. B., Haylock-Jacobs, S., & Yong, V. W. (2013). Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nature Reviews Neuroscience, 14(10), 722-729.
Li, S., Fan, T., Hao, Z., Zhang, Z., Han, X., Li, J., Wang, Y., Zhou, H., & Xue, X. (2025). The Prognostic Significance of TMSB4X in Glioma Patients. International Journal of General Medicine, 2923-2940.
Li, Z., Sun, C., & Qin, Z. (2021). Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics, 11(17), 8322.
Lin, C., Wang, N., & Xu, C. (2023). Glioma-associated microglia/macrophages (GAMs) in glioblastoma: Immune function in the tumor microenvironment and implications for immunotherapy. Frontiers in Immunology, 14, 1123853.
Lugano, R., Ramachandran, M., & Dimberg, A. (2020). Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences, 77, 1745-1770.
Maas, S. L., Breakefield, X. O., & Weaver, A. M. (2017). Extracellular vesicles: unique intercellular delivery vehicles. Trends in cell biology, 27(3), 172-188.
Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in immunology, 23(11), 549-555.
Marfeo, A. (2010). Neuroanatomy through clinical cases. The Yale Journal of Biology and Medicine, 83(3), 165.
Masliah-Planchon, J., Pasmant, E., Luscan, A., Laurendeau, I., Ortonne, N., Hivelin, M., Varin, J., Valeyrie-Allanore, L., Dumaine, V., & Lantieri, L. (2013). MicroRNAome profiling in benign and malignant neurofibromatosis type 1-associated nerve sheath tumors: evidences of PTEN pathway alterations in early NF1 tumorigenesis. BMC genomics, 14, 1-11.
Mehta, D., & Malik, A. B. (2006). Signaling mechanisms regulating endothelial permeability. Physiological reviews, 86(1), 279-367.
Nagappan, P. G., Chen, H., & Wang, D.-Y. (2020). Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Military Medical Research, 7(1), 30.
Niland, S., Riscanevo, A. X., & Eble, J. A. (2021). Matrix metalloproteinases shape the tumor microenvironment in cancer progression. International journal of molecular sciences, 23(1), 146.
Ostrom, Q. T., Cioffi, G., Waite, K., Kruchko, C., & Barnholtz-Sloan, J. S. (2021). CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro Oncol, 23(12 Suppl 2), iii1-iii105. https://doi.org/10.1093/neuonc/noab200
Padmanabhan, K., Grobe, H., Cohen, J., Soffer, A., Mahly, A., Adir, O., Zaidel-Bar, R., & Luxenburg, C. (2020). Thymosin β4 is essential for adherens junction stability and epidermal planar cell polarity. Development, 147(23), dev193425.
Pęczek, P., Gajda, M., Rutkowski, K., Fudalej, M., Deptała, A., & Badowska-Kozakiewicz, A. M. (2023). Cancer-associated inflammation: pathophysiology and clinical significance. Journal of cancer research and clinical oncology, 149(6), 2657-2672.
Pesheva, P., & Probstmeier, R. (2000). The yin and yang of tenascin-R in CNS development and pathology. Progress in neurobiology, 61(5), 465-493.
Scherer, H. (1938). Structural development in gliomas. The American Journal of Cancer, 34(3), 333-351.
Schonberg, D. L., Lubelski, D., Miller, T. E., & Rich, J. N. (2014). Brain tumor stem cells: Molecular characteristics and their impact on therapy. Molecular aspects of medicine, 39, 82-101.
Semenza, G. L. (2012). Hypoxia-inducible factors in physiology and medicine. Cell, 148(3), 399-408.
Serres, E., Debarbieux, F., Stanchi, F., Maggiorella, L., Grall, D., Turchi, L., Burel-Vandenbos, F., Figarella-Branger, D., Virolle, T., & Rougon, G. (2014). Fibronectin expression in glioblastomas promotes cell cohesion, collective invasion of basement membrane in vitro and orthotopic tumor growth in mice. Oncogene, 33(26), 3451-3462.
Skuli, N., Monferran, S., Delmas, C., Favre, G., Bonnet, J., Toulas, C., & Cohen-Jonathan Moyal, E. (2009). αvβ3/αvβ5 Integrins-FAK-RhoB: A novel pathway for hypoxia regulation in glioblastoma. Cancer Research, 69(8), 3308-3316.
Skuli, N., Monferran, S., Delmas, C., Lajoie-Mazenc, I., Favre, G., Toulas, C., & Cohen-Jonathan-Moyal, E. (2006). Activation of RhoB by hypoxia controls hypoxia-inducible factor-1α stabilization through glycogen synthase kinase-3 in U87 glioblastoma cells. Cancer Research, 66(1), 482-489.
Sørensen, M. D., Dahlrot, R. H., Boldt, H. B., Hansen, S., & Kristensen, B. W. (2018). Tumour‐associated microglia/macrophages predict poor prognosis in high‐grade gliomas and correlate with an aggressive tumour subtype. Neuropathology and applied neurobiology, 44(2), 185-206.
Stupp, R., Mason, W. P., Van Den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., Belanger, K., Brandes, A. A., Marosi, C., & Bogdahn, U. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England journal of medicine, 352(10), 987-996.
Taheri, B., Soleimani, M., Aval, S. F., Memari, F., & Zarghami, N. (2018). C6 glioma-derived microvesicles stimulate the proliferative and metastatic gene expression of normal astrocytes. Neuroscience Letters, 685, 173-178.
Tamimi, A. F., & Juweid, M. (2017). Epidemiology and outcome of glioblastoma. Exon Publications, 143-153.
Tkach, M., & Théry, C. (2016). Communication by extracellular vesicles: where we are and where we need to go. Cell, 164(6), 1226-1232.
Twohig, J. P., Cuff, S. M., Yong, A. A., & Wang, E. C. (2011). The role of tumor necrosis factor receptor superfamily members in mammalian brain development, function and homeostasis.
Vasile, F., Dossi, E., & Rouach, N. (2017). Human astrocytes: structure and functions in the healthy brain. Brain Structure and Function, 222(5), 2017-2029.
Wolburg, H., Noell, S., Fallier-Becker, P., Mack, A. F., & Wolburg-Buchholz, K. (2012). The disturbed blood–brain barrier in human glioblastoma. Molecular aspects of medicine, 33(5-6), 579-589.
Wu, D., Chen, Q., Chen, X., Han, F., Chen, Z., & Wang, Y. (2023). The blood–brain barrier: Structure, regulation and drug delivery. Signal transduction and targeted therapy, 8(1), 217.
Xiao, Y., & Yu, D. (2021). Tumor microenvironment as a therapeutic target in cancer. Pharmacology & therapeutics, 221, 107753.
Yabo, Y. A., Niclou, S. P., & Golebiewska, A. (2022). Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma. Neuro-oncology, 24(5), 669-682.
Yang, Z., Luo, J., Zhang, M., Zhan, M., Bai, Y., Yang, Y., Wang, W., & Lu, L. (2023). TMSB4X: A novel prognostic marker for non-small cell lung cancer. Heliyon, 9(11).
Yao, M., Li, S., Wu, X., Diao, S., Zhang, G., He, H., Bian, L., & Lu, Y. (2018). Cellular origin of glioblastoma and its implication in precision therapy. Cellular & molecular immunology, 15(8), 737-739.
Ye, X.-z., Xu, S.-l., Xin, Y.-h., Yu, S.-c., Ping, Y.-f., Chen, L., Xiao, H.-l., Wang, B., Yi, L., & Wang, Q.-l. (2012). Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. The Journal of Immunology, 189(1), 444-453.
Yuan, Z., Li, Y., Zhang, S., Wang, X., Dou, H., Yu, X., Zhang, Z., Yang, S., & Xiao, M. (2023). Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Molecular cancer, 22(1), 48.
Zarco, N., Norton, E., Quiñones-Hinojosa, A., & Guerrero-Cázares, H. (2019). Overlapping migratory mechanisms between neural progenitor cells and brain tumor stem cells. Cellular and Molecular Life Sciences, 76, 3553-3570.
Zeiner, P. S., Preusse, C., Golebiewska, A., Zinke, J., Iriondo, A., Muller, A., Kaoma, T., Filipski, K., Müller‐Eschner, M., & Bernatz, S. (2019). Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas. Brain pathology, 29(4), 513-529.
Zhang, J., Zhang, Z. G., Li, Y., Ding, X., Shang, X., Lu, M., Elias, S. B., & Chopp, M. (2015). Fingolimod treatment promotes proliferation and differentiation of oligodendrocyte progenitor cells in mice with experimental autoimmune encephalomyelitis. Neurobiology of Disease, 76, 57-66.
Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., & Li, Y. (2021). Inflammation and tumor progression: signaling pathways and targeted intervention. Signal transduction and targeted therapy, 6(1), 263.
Zhao, Z., Wang, Y., Yun, D., Huang, Q., Meng, D., Li, Q., Zhang, P., Wang, C., Chen, H., & Lu, D. (2020). TRIM21 overexpression promotes tumor progression by regulating cell proliferation, cell migration and cell senescence in human glioma. American journal of cancer research, 10(1), 114.
Zheng, Y., Liu, L., Wang, Y., Xiao, S., Mai, R., Zhu, Z., & Cao, Y. (2021). Glioblastoma stem cell (GSC)-derived PD-L1-containing exosomes activates AMPK/ULK1 pathway mediated autophagy to increase temozolomide-resistance in glioblastoma. Cell & bioscience, 11, 1-12.
Zhu, C., Kros, J. M., Cheng, C., & Mustafa, D. (2017). The contribution of tumor-associated macrophages in glioma neo-angiogenesis and implications for anti-angiogenic strategies. Neuro-oncology, 19(11), 1435-1446.
校內:2027-07-23公開