簡易檢索 / 詳目顯示

研究生: 許芷瑋
Xu, Zhi-Wei
論文名稱: 螢光生命週期影像應用於小鼠肺高壓之無染色組織分析
Unstained Tissue Analysis for Pulmonary Arterial Hypertension in Mouse Model using Fluorescence Lifetime Imaging
指導教授: 張家源
Chang, Chia-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 115
中文關鍵詞: 多光子激發顯微術時間相關單光子計數技術螢光生命週期相量分析肺動脈高壓
外文關鍵詞: multi-photon excitation fluorescence microscopy, time-correlated single photon counting, fluorescence lifetime, phasor analysis, pulmonary arterial hypertension
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多光子激發螢光顯微術(multiphoton excited fluorescence microscopy,MPEFM)以超快雷射(ultrafast laser)激發非線性光學現象,其超快雷射的波長以近紅外光波段(near-infrared,NIR)作為光源於生物組織具低吸收率的特性,故擁有低光漂白(photobleaching)以及較深的生物穿透深度(penetration depth)等優點,並根據激發光子數目重建樣品之螢光強度影像;另外藉由時間相關單光子計數技術(time-correlated single photon counting,TCSPC),其根據接收的光子訊號脈衝以及激發雷射脈衝相差的延遲時間紀錄並加以累積光子數目與時間差的直方圖,可直接顯示螢光生命週期(fluorescence lifetime)資訊,而螢光生命週期顯微成像技術(fluorescence lifetime imaging microscopy,FLIM)結合相量分析(phasor analysis)可提供螢光強度影像外的輔助資訊,因此於生物影像、病理研究與疾病檢測都能有廣泛的應用與市場價值。
    本論文藉由FLIM技術應用於肺動脈高壓(pulmonary arterial hypertension,PAH),主要目的為不經過特殊染色直接辨別肺動脈周圍的膠原纖維(collagen)以及平滑肌(smooth muscle),透過小鼠尾巴肌腱樣品之FLIM分析,有助於得知膠原纖維於不同激發雷射波長與螢光濾片組合之螢光生命週期數值區間,而肺高壓模型以雷射激發波長800 nm和螢光濾片405/150作為實驗最佳組合進行FLIM分析,其中膠原纖維之螢光生命週期數值約為0.6 ns至1.2 ns,而平滑肌之螢光生命週期數值約為1.6 ns至2 ns,最後分別計算控制組、MCT組以及MCT+MAG組的肺動脈厚度百分比,並以Mann─Whitney U檢定來比較兩個獨立組別,其結果表明MCT誘導的PAH動物模型中,MCT+MAG組的肺動脈厚度百分比與MCT組相較之下有顯著降低。

    Multiphoton excited fluorescence microscopy (MPEFM) uses an ultrafast laser to induce nonlinear optical phenomena. This laser operates in the near-infrared (NIR) range, which has low absorption in biological tissues, resulting in benefits such as low photobleaching and deeper tissue penetration. MPEFM reconstructs fluorescence intensity images based on the number of signal photons. Time-correlated single photon counting (TCSPC) records the time delay between received photon signals and laser pulses, providing fluorescence lifetime information. Fluorescence lifetime imaging microscopy (FLIM) with phasor analysis offers additional insights beyond fluorescence intensity, making it valuable for biological imaging, pathology, and disease detection. This thesis applies FLIM to pulmonary arterial hypertension (PAH) to identify collagen fibers and smooth muscle around the pulmonary artery without special staining. FLIM analysis of tendon samples helps determining the fluorescence lifetime range of collagen fibers. In the pulmonary hypertension model, FLIM analysis used an 800 nm laser excitation wavelength and a 405/150 nm fluorescence filter, which were optimal parameters. The fluorescence lifetime of collagen fibers was about 0.6 to 1.2 ns, and that of smooth muscle was about 1.6-2 ns. The pulmonary artery wall thickness percentage was calculated for control, MCT, and MCT+MAG groups. The Mann–Whitney U test showed a significant reduction in pulmonary artery smooth muscle thickness in the MCT+MAG group than in the MCT-induced PAH model.

    摘要 I Extended Abstract II 致謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1前言 1 1-2文獻回顧 2 1-3研究動機 5 1-4 論文架構 6 第二章 多光子激發螢光顯微系統與螢光生命週期 7 2-1雙光子非線性激發效應 7 2-2多光子螢光系統 9 2-2-1 系統架構 9 2-2-2平整度校正 11 2-2-3系統解析度量測 13 2-3時間相關單光子計數系統(TCSPC) 16 2-3-1原理介紹 16 2-3-2系統架構與校正 17 2-3-3實驗測試 20 2-4基於相量分析之螢光生命週期 21 2-4-1理論 21 2-4-2模擬 24 2-4-3實驗測試 25 第三章 肌腱樣品之膠原纖維於螢光生命週期分析 29 3-1肌腱樣品製備 29 3-2激發波長與接收波長搭配比較 30 3-2-1激發波長800 nm 31 3-2-2激發波長710 nm 33 3-3結果討論與應用 35 第四章 小鼠之肺高壓模型於螢光生命週期分析 37 4-1肺高壓臨床診斷方式與分類 37 4-2 Monocrotaline (MCT)誘導PAH動物模型 38 4-3 Micro-CT 39 4-4 PAH動物模型特殊染色 40 4-4-1蘇木精-伊紅染色(Hematoxylin and Eosin staining) 40 4-4-2天狼星紅染色(Picro-Sirius Red staining) 41 4-4-3 Verhoeff–Van Gieson染色(VVG staining) 42 4-5雷射激發波長與接收波長搭配比較 43 4-5-1激發波長830 nm 43 4-5-2激發波長800 nm 47 4-5-3激發波長710 nm 51 4-6結果與討論 55 4-6-1選定雷射激發波長以及螢光濾片 55 4-6-2動脈與染色位置相應 59 4-6-3靜脈 63 4-7實驗結果 65 第五章 結論與未來展望 71 5-1結果與討論 71 5-2未來展望 72 參考文獻 75 附錄 82

    1. K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photon. 7(4), 684–712 (2015).
    2. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7, 93–101 (2013).
    3. T. Abraham, J. A. Hirota, S. Wadsworth, and D. A. Knight, “Minimally invasive multiphoton and harmonic generation imaging of extracellular matrix structures in lung airway and related diseases,” Pulm. Pharmacol. Ther. 24(5), 487–496 (2011).
    4. M. Suzuki, D. Kayra, and W. M. Elliott et al., “Second Harmonic Generation Microscopy Differentiates Collagen Type I and Type III in COPD,” Multiphoton Microscopy in the Biomedical Sciences Xii, 8226, (2012).
    5. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat Biotechnol. 21(11), 1369−1377 (2003).
    6. V. Kalinushkin, O. Uvarov, and A. Gladilin, “Photoluminescent tomography of semiconductors by two–photon confocal microscopy technique,” J. Electron. Mater. 47, 5087–5091 (2018).
    7. Liu Xiong–Bo, Lin Dan–Ying, Wu Qian–Qian, Yan Wei, Luo Teng, et al., “Recent progress of fluorescence lifetime imaging microscopy technology and its application,” Acta Phys. Sin., 67(17), 178701 (2018).
    8. S. M. Levchenko, A. Pliss and J. Qu, “Fluorescence lifetime imaging of fluorescent proteins as an effective quantitative tool for noninvasive study of intracellular processes,” J. Innovative Opt. Health Sci., 11, 1730009 (2018).
    9. C. Liu, Y. Zhou, X. W. Wang, et al, “Fluorescence Lifetime Imaging Microscopy and Its Research Progress,” Laser & Optoelectronics Progress, 48(11), 111102 (2011).
    10. W. Becker, Advanced Time–Correlated Single–Photon Counting, Springer, Berlin (2005).
    11. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493 (1960).
    12. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    13. M. Göppert‐Mayer, “Elementary processes with two quantum transitions,” Ann. Phys. 18(7−8), 466−479 (2009).
    14. W. Denk, J. H. Strickler, and W. W. Webb, “Two–Photon Laser Scanning Fluorescence Microscopy,” Science. 248(4951), 73−76 (1990).
    15. G. G. Stokes, “On the change of refrangibility of light,” Philos. Trans. R. Soc. Lond. 142, 267–414 (1852).
    16. B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley–VCH, Weinheim, 2002).
    17. F. Perrin, “Fluorescence of solutions: Molecular induction–Polarization and duration of emission–Photochemistry,” Ann. Phy. 10, 169–275 (1929).
    18. W. Becker, Advanced Time–Correlated Single Photon Counting Applications, Springer, (2005).
    19. A. K. L. Dymoke–Bradshaw, “Impact of high–voltage pulse technology on high–speed photography,” Proc. SPIE 1757, 2–6 (1993).
    20. E. Gratton, B. Barbieri, “Multifrequency Phase Fluorometry Using Pulsed Sources: Theory and Applications,” Spectroscopy 1, 28 (1986).
    21. W. Becker, “Fluorescence lifetime imaging – techniques and applications,” J. Microsc. 247, 119–136 (2012).
    22. K. König, A. Uchugonova, and E. Gorjup, “Multiphoton fluorescence lifetime imaging of 3D–stem cell spheroids during differentiation,” Microsc. Res. Tech. 74(1), 9–17 (2011).
    23. K. König and I. Riemann, “High–resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8(3), 432–439 (2003).
    24. T. A. Shaik et al., “Monitoring changes in biochemical and biomechanical properties of collagenous tissues using label–free and nondestructive optical imaging techniques,” Anal. Chem., 93 (8), 3813 –3821 (2021).
    25. A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(8), 5184–5194 (2014).
    26. S. Ranjit, E. Dobrinskikh, J. Montford, A. Dvornikov, A. Lehman, et al., “Label–free fluorescence lifetime and second harmonic generation imaging microscopy improves quantification of experimental renal fibrosis,” Kidney Int. 90(5), 1123–1128 (2016).
    27. P. H. Lakner, M. G. Monaghan, Y. Möller, M. A. Olayioye, and K. Schenke–Layland, “Applying phasor approach analysis of multiphoton FLIM measurements to probe the metabolic activity of three–dimensional in vitro cell culture models,” Sci. Rep. 7, 42730 (2017).
    28. C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan, and E. Gratton, “Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(33), 13582–13587 (2011).
    29. T. Luo, D. Lin, T. Zhou, Y. Lu, S. Liu, and J. Qu, “Identification and characterization of different tissues in blood vessel by multiplexed fluorescence lifetimes,” Analyst (Lond.) 143(10), 2243–2248 (2018).
    30. A. Alfonso–Garcia, A. K. Haudenschild, and L. Marcu, “Label–free assessment of carotid artery biochemical composition using fiber–based fluorescence lifetime imaging,” Biomed. Opt. Express 9(9), 4064–4076 (2018).
    31. K. R. Stenmarket al., “Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure,” Am. J. Physiol. Lung Cell Mol. Physiol., 297(6), 1013–1032 (2009).
    32. J. Ryan, K. Bloch, S. L. Archer, “Rodent models of pulmonary hypertension: harmonisation with the world health organisation's categorisation of human PH,” Int. J. Clin. Pract. Suppl. 172, 15–34 (2011).
    33. G. Maarman, S. Lecour, G. Gutrous, F. Thienemann, K. Sliwa, “A comprehensive review: the evolution of animal models in pulmonary hypertension research; are we there yet?” Pulm. Circ. 3(4), 739–56 (2013).
    34. M. Shah, K. Patel,P. B. Sehgal, “Monocrotaline pyrrole–induced endothelial cell megalocytosis involves a Golgi blockade mechanism,” Am. J. Physiol. Cell Physiol. 288(4), 850–862 (2005).
    35. M. Humbert, O. Sitbon, A. Chaouat, et al., “Pulmonary arterial hypertension in France: results from a national registry,” Am. J. Respir. Crit. Care Med. 173(9), 1023–1030 (2016).
    36. D. B. Badesch, G. E. Raskob, C. G. Elliott, et al., “Pulmonary arterial hypertension: baseline characteristics from the REVEAL registry,” Chest. 137(2), 376–387 (2010).
    37. G. E. D’Alonzo, R.J. Barst, S. M. Ayres, et al., “Survival in patients with primary pulmonary hypertension: results from a national prospective registry,” Ann Intern Med. 115(5), 343–349 (1991).
    38. C. H. Hsu, I. F. Liu, H. F. Kuo, C. Y. Li, et al., “miR–29a–3p/THBS2 axis regulates PAH–induced cardiac fibrosis,” Int. J. Mol. Sci. 22(19), 10574 (2021).
    39. J. L. Sánchez–Gloria, et al., “Allicin, an Emerging Treatment for Pulmonary Arterial Hypertension: An Experimental Study,” Int. J. Mol. Sci. 24(16), 12959 (2023).
    40. D. M. Jameson, E. Gratton, and R. Hall, “The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry,” Appl. Spectrosc. Rev. 20(1), 55–106 (1984).
    41. S. Ranjit, L. Malacrida, D. M. Jameson, and E. Gratton, “Fit–free analysis of fluorescence lifetime imaging data using the phasor approach,” Nat. Protoc 13(9), 1979–2004 (2018).
    42. HyperPhysics, Rayleigh scattering, from: http://hyperphysics.phy–astr.gsu.edu/hbase/index.html
    43. X. L. Deán–Ben, S. Gottschalk, B. M. Larney, S. Shoham, and D. Razansky, “Advanced optoacoustic methods for multiscale imaging of in vivo dynamics,” Chem. Soc. Rev. 46(8), 2158–2198 (2017).
    44. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
    45. P. J. Campagnola and L. M. Loew, “Second–harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
    46. L. Malacrida, S. Ranjit, D. M. Jameson, and E. Gratton, “The phasor plot: a universal circle to advance fluorescence lifetime analysis and interpretation,” Annu. Rev. Biophys. 50(1), 575–593 (2021).
    47. G. Weber, “Resolution of the fluorescence lifetimes in a heterogeneous system by phase and modulation measurements,” J. Phys. Chem. 85(8), 949–953 (1981).
    48. Fluorescent Microscope Slides, FSK5, from: https://www.thorlabs.com/thorproduct.cfm?partnumber=FSK5
    49. S. Ranjit, et al. “Imaging Fibrosis and Separating Collagens using Second Harmonic Generation and Phasor Approach to Fluorescence Lifetime Imaging,” Sci. Rep. 21(5), 13378 (2015).
    50. M. Humbert, C. Guignabert, S. Bonnet, P. Dorfm¨uller, J. R. Klinger, M. R. Nicolls, Olschewski, et al., “Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives,” Eur. Respir. J. 53, 1801887 (2019).
    51. G. Simonneau, M. A. Gatzoulis, I. Adatia, D. Celermajer, C. Denton, A. Ghofrani, “Updated clinical classification of pulmonary hypertension,” J. Am. Coll. Cardiol. 24, 62 (2013).
    52. A. A. R. Thompson, and A. Lawrie, “Targeting vascular remodeling to treat pulmonary arterial hypertension,” Trends Mol. Med. 23, 31–45 (2017).
    53. R. Luna–López, A. Ruiz Martín, and P. Escribano Subías, “Pulmonary arterial hypertension,” Med Clin. 158(12), 622–629 (2022).
    54. Y. Hu, L. Chi, W. M. Kuebler, N. M. Goldenberg, “Perivascular Inflammation in Pulmonary Arterial Hypertension,” Cells, 9(11), 2338 (2020).
    55. N. F. Voelkel, R. M. Tuder, K. Wade, M. Höper, et al. “Inhibition of 5–lipoxygenase–activating protein (FLAP) reduces pulmonary vascular reactivity and pulmonary hypertension in hypoxic rats.” J. Clin. Invest. 97, 2491–2498 (1996).
    56. S. H. Vitali, G. Hansmann, C. Rose, et al. “The Sugen 5416/hypoxia mouse model of pulmonary hypertension revisited: Long-term follow-up,” Pulm. Circ. 4, 619–629 (2014).
    57. D. W. Wilson, H. J. Segall, L. C. Pan, S. K. Dunston, “Progressive inflammatory and structural changes in the pulmonary vasculature of monocrotaline-treated rats,” Microvasc. Res. 38(1), 57–80 (1989).
    58. K. Abe, M. Toba, A. Alzoubi, et al. “Formation of plexiform lesions in experimental severe pulmonary arterial hypertension,” Circulation 121, 2747–2754 (2010).
    59. M. L. Paffett, S. N. Lucas, M. J. Campen, “Resveratrol reverses monocrotaline-induced pulmonary vascular and cardiac dysfunction: A potential role for atrogin-1 in smooth muscle,” Vasc. Pharmacol. 56, 64–73 (2012).
    60. M. Le Hiress, L. Tu, N. Ricard, C. Phan, et al. “Proinflammatory Signature of the Dysfunctional Endothelium in Pulmonary Hypertension. Role of the Macrophage Migration Inhibitory Factor/CD74 Complex.” Am. J. Respir. Crit. Care Med. 192, 983–997 (2015).
    61. J. L. Sánchez–Gloria, C. E. Martínez–Olivares, L. D. Valle–Mondragón, et al. “Allicin, an emerging treatment for pulmonary arterial hypertension: an experimental study,” Int. J. Mol. Sci. 24(16), 12959 (2023).
    62. A. D. Elder, J. H. Frank, J. Swartling, X. Dai, and C. F. Kaminski, “Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources,” J. Microsc. 224(2), 166–180 (2006).
    63. Coherent, specification of Chameleon Ultra series, from: https://www.coherent.com/lasers/oscillators/chameleon–ultra
    64. TCSPC, PicoHarp 300, from: https://www.picoquant.com/products/category/tcspc–and–time–tagging–modules

    無法下載圖示 校內:立即公開
    校外:2026-08-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE