| 研究生: |
林煌鈞 Lin, Huang-Chun |
|---|---|
| 論文名稱: |
應用虛擬裂紋閉合法於三維界面裂紋問題 Application of Virtual Crack Closure Technique for Three Dimensional Interfacial Crack Problems |
| 指導教授: |
屈子正
Chiu, Tz-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 界面裂紋 、三維裂紋問題 、相位角 、接觸 、有限元素分析 、虛擬裂紋閉合法 、複數應力強度因子 |
| 外文關鍵詞: | Virtual crack closure technique, Three-dimensional crack problem, Contact, Finite element analysis, Phase angles, Complex stress intensity factor, Interface fracture |
| 相關次數: | 點閱:111 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用有限元素法配合虛擬裂紋閉合法(virtual crack closure technique, VCCT)計算雙材料界面裂紋的三維破壞力學參數,包括應變能釋放率(strain energy release rate, SERR),應力強度因子(stress intensity factor, SIF)和相位角(phase angle)。其中,應變能釋放率可藉由裂紋尖端元素節點上的力量和位移計算出的裂紋閉合積分式疊加求得。另外,從界面裂紋尖端的漸近應力和位移場與裂紋閉合積分式之理論關係,可求得以裂紋閉合積分式計算應力強度因子及相位角之代數式。由於界面裂紋尖端的奇異彈性應力場具有震盪的行為,應力強度因子之值亦會隨著使用之長度單位而有震盪的行為。這個震盪的特性,會造成直接使用虛擬裂紋閉合法求解界面裂紋之應力強度因子的困難。對此問題,可藉由特定的材料特徵長度來無因次化震盪的應力強度因子,使其單位回復至(應力)×(長度)1/2。此外,對於較特殊之界面裂紋問題,包含裂紋尖端發生大範圍接觸和裂紋面受到內壓力的情况,本研究亦提出專用的公式來計算其破壞力學參數。針對於本文所提出的破壞力學參數求解方法,首先透過與界面裂紋問題的理論解析解比對驗證。而後,本文討論應用虛擬裂紋閉合法來分析雙材料平板之邊緣半圓形界面裂紋受到均勻溫度變化負載的問題。另外,電子覆晶封裝體中鑲埋於矽晶及底填膠界面之角落脫層受到熱負載的問題也在本文中探討。
The fracture mechanics parameters, including the strain energy release rate, the stress intensity factors and phase angles are determined for a three-dimensional interface crack by using numerical finite element approach with the virtual crack closure technique (VCCT). In the VCCT, crack closure integrals are obtained from the solutions of finite element nodal forces and displacements around the crack tip. These crack closure integrals are then summed to obtain the strain energy release rate. A complication in applying the VCCT directly to calculate the stress intensity factors for a bimaterial interface crack is that the results would depend on the size of the virtual crack extension. This is due to the oscillating behavior of the elastic singular stress field around the interface crack tip. The issue may be overcome by normalizing the stress intensity factors to a given material length such that the units for the stress intensity factors are in (stress) (length)1/2. A set of algebraic equations to express the normalized stress intensity factors and the corresponding phase angles in terms of the crack closure integrals is derived based on the asymptotic elastic fields around the crack tip. In addition, variations of the equations for determining the fracture mechanics parameters are given for cases including contacting between interface crack faces and crack subjected to inner pressure. Validation of the proposed approach is performed by comparing the numerically determined stress intensity factors for interface cracks to analytical solutions. The VCCT is then applied to study the problem of a semi-circular surface crack on the interface of semi-infinite bi-material plate subjected to uniform temperature excursion. The problem of an electronic package containing an embedded interface corner crack under thermomechanical load is also presented as an application example.
[1] Hutchinson JW, Suo Z. Mixed mode cracking in layered
materials. In: Hutchinson JW, Wu TY, editors. Advances
in applied mechanics, New York: Academic Press,
p.63-191, 1992.
[2] Mossakovskii VI, Rybka MT. Generalization of the
Griffith-Sneddon criterion for the case of a
nonhomogeneous body. J Appl Math Mech 1964;28:1277-1286.
[3] Ayhan AO, Nied HF. Stress intensity factors for three-
dimensional surface cracks using enriched finite
elements. Int J Numer Methods Eng 2002;54:899-921.
[4] Ayhan AO, Kaya AC, Nied HF. Analysis of three-
dimensional interface cracks using enriched finite
elements. Int J Fract 2006;142:255-276.
[5] Nakamura T. Three-dimensional stress fields of elastic
interface cracks. J Appl Mech 1991;58:939-946.
[6] Irwin GR. Analysis of stresses and strains near the end
of a crack traversing a plate. J Appl Mech
1957;24:361-364.
[7] Rybicki EF, Kanninen MF. A finite element calculation
of stress intensity factors by a modified crack closure
integral. Engng Fract Mech 1977;9:931-938.
[8] Shivakumar KN, Tan PW, Newman Jr. JC. A virtual crack-
closure technique for calculating stress intensity
factors for cracked three dimensional bodies. Int J
Fract 62 1988;36;R43-R50.
[9] Raju IS. Simple formulas for strain-energy release
rates with higher order and singular finite elements.
NASA/CR-1986-178186.
[10] Roeck GD, Abdel Wahab MM. Strain energy release rate
formulae for 3D finite element. Engng Fract Mech
1995;50:569-580.
[11] Raju IS, Sistla R, Krishnamurthy. Fracture Mechanics
analyses for skin-stiffener debonding. Engng Fract
Mech 1996;54:371-385.
[12] Fawaz SA. Application of the virtual crack closure
technique to calculate stress intensity factors for
through cracks with an elliptical crack front. Engng
Fract Mech 1998;59:327-342.
[13] Xie D, Biggers JS. Strain energy release rate
calculation for a moving delamination front of
arbitrary shape based on the virtual crack closure
technique. Part I: Formulation and validation. Engng
Fract Mech 2006;73:771-785.
[14] Miravete A, Jimenez MA. Application of the finite
element method to prediction of onset of delamination
growth. Appl Mech Rev 2002;55:89-106.
[15] Krueger R. The virtual crack closure technique:
history, approach and applications. NASA/CR-
2002-211628.
[16] Williams ML. The stresses around a fault or crack in
dissimilar media. Bull Seismol Soc Am 1959;49:199-204.
[17] Matos PPL, McMeeking RM, Charalambides PG, Drory MD. A
method for calculating stress intensities in
bimaterial fracture. Int J Fract 1989;40:235-254.
[18] Chow WT, Atluri SN. Finite element calculation of
stress intensity factors for interfacial crack using
virtual crack closure integral. Computat Mech
1995;16:417-425.
[19] Sun CT, Qian W. The use of finite extension strain
energy release rates in fracture of interfacial
cracks. Int J Solids Struct 1997;34:2595-2609.
[20] Agrawal A, Karlsson AM. Obtaining mode mixity for a
bimaterial interface crack using the virtual crack
closure technique. Int J Fract 2006;141:75-98.
[21] Bjerken C, Persson C. A numerical method for
calculating stress intensity factors for interface
cracks in bimaterials. Engng Fract Mech
2001;68:235-246.
[22] Comninou M. An overview of interface cracks. Engng
Fract Mech 1990;37:197-208.
[23] Venkatesha KS, Dattaguru B, Ramamurthy TS. Finite
element analysis of an interface crack with large
crack-tip contact zones. Engng Fract Mech
1996;54:847-860.
[24] Qian W, Sun CT. A frictional interfacial crack under
combined shear and compression. Compos Sci Tech
1998;58:1753-1761.
[25] Rice JR. Elastic fracture mechanics concepts for
interfacial cracks. J Appl Mech 1988;55:98-103. 64
[26] Rice JR, Suo Z, Wang JS. Mechanics and thermodynamics
of brittle interfacial failure in bimaterial system.
In: Ruhle M, Evans AG, Ashby MF, Hirth JP, editors.
Metal-Ceramics Interfaces, New York: Pergamon,
P.269-294, 1990.
[27] Dundurs J. Edge bonded dissimilar orthogonal elastic
wedges. J Appl Mech 1969;36:650-652.
[28] Kassir MK, Bregman AM. The stress intensity factor for
a penny-shaped crack between two dissimilar materials.
J. Appl Mech 1972;39:308-310.
[29] Wu XF, Yuris AD. Closed-form solution for a mode-III
interfacial edge crack between two bonded dissimilar
elastic strips. Mechanics Research Communication
2002;29:407-412.
[30] Gautesen AK, Dundurs J. The interface crack under
combined loading. J Appl Mech 1988;55:580-586.