簡易檢索 / 詳目顯示

研究生: 朱智鴻
Chu, Chih-Hung
論文名稱: 稀土及鹼土氧化物添加劑對燒結氮化鋁陶瓷性質研究
Effects of rare-earth and alkaline earth oxides additives on the sintering properties of aluminum nitride ceramics
指導教授: 申永輝
Shen, Yun-Hwei
共同指導教授: 溫紹炳
Wen, Shaw-Bing
林志朋
Lin, Chih-Peng
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 133
中文關鍵詞: 氮化鋁稀土氧化物氧化鋁坩堝二矽化鉬加熱元件熱傳導值介電維氏硬度破裂韌性
外文關鍵詞: Aluminum nitride, Rare-earth oxides, Al2O3 crucible, MoSi2 heating element, Thermal conductivity, Dielectric, Fracture toughness
相關次數: 點閱:104下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究起始氮化鋁粉末分別添加不同稀土氧化物(Y、Sm、Gd和Yb)與氧化鈣共添加作為粉末燒結助劑,並採氧化鋁坩堝置入一般箱型二矽化鉬高溫爐中通入普通純度氮氣進行溫度1570oC~1700oC的氮化鋁燒結試驗。這個製程的優勢在於不需要有高精密控制氣氛的燒結爐,如石墨爐、微波燒結爐和電漿爐等,因而燒結爐設備不僅裝置簡單且體積也相對較小,最重要的是製程及設備的成本可大幅地降低,更增添後續業界量產氮化鋁基板的可行性。由密度量測結果顯示三種不同原子量的稀土元素在燒結期間的原子擴散動力學差異會影響氮化鋁的燒結緻密化,其中燒結條件在1700oC持溫3小時的緻密燒結體可獲得熱傳導值介於106-147 Wm-1K-1之間,當中試片添加1 wt.%氧化釔和1 wt.%氧化鈣的試片可得相對密度達99%以上且最高熱傳導值147 Wm-1K-1。
    再者,由氮化鋁分別添加氧化釔-氧化鈣和氧化鐿-氧化鈣兩組試片分別進行有無通入氮氣氛進行燒結溫度1615oC持溫4小時的試驗,其結果顯示通入氮氣氛進行燒結的試片密度相較無通入氮氣氛的試片密度高,明顯由80%提升至87%。此外,由燒結體殘碳量分析結果顯示,試片中的殘碳量皆低於0.4%,甚至與原樣中的碳雜質含量0.11%相當,說明本製程中的隔絕劑-碳黑在製備氮化鋁的熱處理期間無明顯擴散至晶粒中的現象產生。除此之外,實驗中採田口實驗計劃法進行氮化鋁燒結試驗,其相對密度結果經訊號雜訊比(SN ratio)及變異數分析(ANOVA)顯示眾多製程控制因子中,以燒結溫度和持溫時間對氮化鋁的緻密度提升影響較大,其貢獻度分別達50.4%和29.3%。另外,試片添加0.215和0.43 mole%的氧化釔試片相對密度隨著氧化鈣含量增加而增加,然而添加0.86 mole%的氧化釔試片則在氧化鈣添加量為1.29 mole%時,緻密度達最高96%以上。XRD結果顯示二次相由單一Al5Y3O12相轉變至Al5Y3O12, CaYAl3O7 and CaAl4O7等複合相,主要是受到不同添加劑含量影響,而且試片熱傳導值可達130 Wm-1K-1以上,最主要原因應是受到單一二次相,AlN晶格的純化以及晶界相的獨立分佈有關。
    此外,經無壓液相燒結氮化鋁的試驗中,氮氧分析結果與c軸晶格常數的計算結果顯示,氮氧比(N/O ratio)與c軸晶格常數呈現較大值時,表示燒結體中的氧原子取代氮原子位置的機率較小,則產生不利於熱傳導的鋁空缺相對較少。除此之外,由SEM及BSI顯微結構觀察分布於氮化鋁晶界處的二次相種類及型態對試片的熱傳導值有一定程度的影響,當二次相種類多及二次相的分布呈現圍繞氮化鋁晶粒時,其晶格振盪所產生的聲子傳遞熱能的阻礙便增加;反之,若試片中僅存在單一晶界相或存在氮化鋁晶粒間的二次相呈現孤立分布時,則聲子傳遞的阻礙少,試片的熱傳導值便會有所提高。在熱性質方面,試片經1650oC和1700oC持溫3小時的條件下,可獲得其熱傳導值介於65-110 Wm-1K-1之間;在電性方面,試片在測試條件1 MHz下,介電常數量測介於8.96到10.6之間而介電損失則為0.02 to14.6 x10-3;在機械性質方面,其試片最高維氏硬度值可達1124 kgmm-2而破裂韌性值3.5 MPa•m1/2。最後,由以上最高密度結果顯示,產生緻密氮化鋁的臨界燒結溫度大約為1650oC。

    Aluminum nitride (AlN) ceramics, prepared with additives of CaO plus three different rare-earth oxides (Y, Sm, and Gd, separately), have been densified in an Al2O3 crucible at temperatures of up to 1650°C and 1700°C using a conventional MoSi2 heating element furnace. The advantage of using the particular experimental system and sintering condition is considered to be amenable to lower production cost and enhance the feasibility of mass production. The results of density measurements show that the atomic weight of the rare-earth element may substantially affect the apparent density of the sintered AlN specimen due to the kinetics of atomic diffusion during sintering. Dense AlN ceramics with higher thermal conductivity of 106-147 Wm-1K-1 were successfully obtained by using sintering additives of CaO plus separate rare-earth oxides of Gd, Sm, and Y at 1700°C with 3 h soaking time. The results of this study show that relative densities in excess of 99% of theoretical and a relatively highest thermal conductivity of 147 W/m-1K-1 have been achieved for feedstock materials prepared with combined addition of 1 wt.% Y2O3 and 1 wt.% CaO.
    Moreover, it is noted that fabrication of AlN samples having separately additives in the coupling of (1) Y2O3-CaO and (2) Yb2O3-CaO with the flow of nitrogen atmosphere is significantly related to the densification of AlN, namely the enhancement of densities from 80% to 87%. Results of residual carbon content analysis show that the protective agent as carbon black does not diffuse into sintered bodies in this processing method, seemingly, it seems to be ignored that the trace amount of residual carbon is thus shown to be harmful to properties for AlN ceramics. In addition, it is noted from Taguchi method that the control factors as sintering temperature and soaking time, are main notable factors for the densification of sintered AlN, and the contribution ratios are 50.4% and 29.3%, respectively. Noted that the relative densities of samples having 0.215 and 0.43 mole% Y2O3 increase with increasing CaO addition; whereas, the relative densities of samples with 0.86 mole% Y2O3 steeply increase first and then, starting at 1.29 mole%, to decrease with increasing CaO addition. Results of XRD profiles show that the formation of secondary phases was given to transform form single Al5Y3O12 phase to the presence of Al5Y3O12, CaYAl3O7 and CaAl4O7 multiple phases due to the mixture of various amount of Y2O3 and CaO addition. Moreover, results shown that the relative density in excess of 96% of theoretical was obtained for AlN sample fired at 1600oC for 8 h, indicating that the employment of micro hot-pressed sintering has been shown to be helpful for augmenting the densification of AlN ceramics. The thermal conductivities up to 130 Wm-1K-1 has greatly related to the merely Al5Y3O12 as secondary phases, the purification of the AlN lattice, and the grain boundary phases isolated distribution.
    The thermal conductivities of 65-110 Wm-1K-1 were obtained for test samples sintered at 1650 and 1700oC for 3 h, giving that the influence of the secondary phase distribution enriched at the grain boundaries for each sintered AlN. For the compacts sintered at 1650oC and 1700oC for 3 h, the dielectric constant and loss factors range form 8.98 to 10.6 and 0.02 to14.6 x10-3 at 1 MHz, respectively. Additionally, higher Vicker's hardness of 1124 kgmm-2 and fracture toughness of approaching 3.5 MPa•m1/2 were obtained for the series of test runs. Critical temperature for AlN densification to obtain the highest density is around1650°C.

    Abstract I 摘要 III 致謝 V Contents VI List of Figures X List of Tables XIV Chapter 1 Introduction 1 1.1 Functions of ceramic substrates for electronic packages 1 1.2 Ceramic materials in packaging substrates 1 1.3 Function and source of rare-earth elements 3 1.4 Preparation of AlN powder 4 1.5 Paper review 6 1.5.1 Procedure method of AlN production 6 1.5.2 Sintering additives on AlN ceramics 9 1.6 Motivations and objective of thesis 13 Chapter 2 Fundamental theory 19 2.1 Characterization of AlN 19 2.2 Effects of additives on properties of AlN 19 2.3 Effects of impurities on properties of AlN 21 2.4 Background for development of sintering condition 23 2.5 Taguchi techniques for quality engineering 24 2.5.1 Classification of experimental factors 25 2.5.2 Analysis of variance (ANOVA) 26 2.5.3 Confirmation experiment of the procedure 28 2.6 Liquid phase sintering mechanism 29 2.7 Thermal conduction process 33 2.8 Instrument for properties 35 2.8.1 Analysis for powder 35 2.8.2 Analysis for bulk 36 Chapter 3 Ceramic technology-Innovative system 47 3.1 Introduction 47 3.2 Experimental procedure 47 3.2.1 Raw materials 47 3.2.2 Arrangement of test specimens 48 3.3 Results and disscussion 48 3.3.1 Phase compositions 48 3.3.2 Densification of sintered AlN 48 3.3.3 Effect of oxygen concentration on thermal conductivity 49 3.3.4 Microstructures by SEM and back-scattered imagery 50 3.3.5 Microprobe analyses for minor phases 51 3.3.6 The advantages of Al2O3 crucible and MoSi2 heating element 51 3.4 Summary 52 Chapter 4 Ceramic engineering-procedure system 60 4.1 Introduction 60 4.2 Experimental procedure 60 4.2.1 Characterization of powders 60 4.2.2 Experimental design 61 4.3 Results and discussion 62 4.3.1 Effect of atmosphere on densification 62 4.3.2 Effect of experimental factors on density 63 4.3.3 Densification of micro hot-pressed sintered AlN 65 4.3.4 Phase compositions of sintered AlN 65 4.3.5 Thermal conductivity of sintered AlN 66 4.3.6 SEM microstructure of sintered AlN 67 4.4 Summary 68 Chapter 5 Ceramic science-formulation system 82 5.1 Introduction 82 5.2 Experimental procedure 82 5.2.1 Powders …..……………………………………………………82 5.2.2 Formulation ……………………………………………………82 5.3 Results and discussion- kinds of rare-earth oxides 83 5.3.1 Phase Compositions 83 5.3.2 Effect of different additives on the density 83 5.3.3 Properties of sintered AlN with different additives 84 5.3.4 Microstructures by SEM and back-scattered imagery 85 5.4 Results and discussion- Y2O3 and CaO addition 87 5.4.1 Phase compositions 87 5.4.2 Densification of sintered AlN 87 5.4.3 Effect of oxygen concentration on thermal conductivity 88 5.4.4 Electrical properties of sintered AlN 89 5.4.5 Vicker's hardness of sintered AlN 90 5.4.6 Fracture toughness of sintered AlN 92 5.4.7 Microstructures by SEM and back-scattered imagery 93 5.4.8 Microprobe analyses for minor phases 94 5.5 Summary 94 Chapter 6 Conclusions and Recommendation 115 6.1 Conclusions 115 6.2 Recommendation 117 References 118

    U. Chowdhry, and A. W. Sleight, Ceramic substrates for microelectronic packaging, Annual Review of Materials Science, Vol. 17, 323-340, August 1987.
    T. G. Tessier, G.. M. Adema, and I. Turlik, Polymer dielectric options for thin film packaging application, Proceedings of the 39th Electronic components conference, (1989), 127-134.
    R. J. Jensen, Polyimides as interlayer dielectrics for high-performance interconnections of integrated circuits, Polymers for high technology, American Chemical Society, (1987), 466-481.
    T. G. Tessier, I. Turlik, G.. M. Adema, D. Sivan, E. K. Yung, and M. J. Berry, Process considerations in Fabricating thin film multichip Modules, Technical Report TR89-45, MCNC, (1989).
    G. Geschwind, and R. M. Clary, Multichip modules: an overview, PC FAB, 28-38, Nov. (1990).
    R. K. Ulrich, and W. D. Brown, Advanced Electronic Packaging, 2nd edition (2006).
    D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother, Polyimides, New York: Chapman and Hall, (1990).
    S. L. Rosen, Fundamental Principles of Polymeric Materials, New York: Wiley, (1993).
    W. F. Smith, Principles of Materials Science and Engineering: Second Edition, New York: McGraw-Hill, (1990).
    R. D. Rossi, Polyimides, reprint from Engineering Materials Handbook, vol. 3: Adhesives and Sealants, Cleveland, Ohio: ASM International, (1991).
    Chinese rare earth market investment analysis and prospect estimate report in 2009-2012 year, (2009).
    F. J. -M. Haussonne, Review of the Synthesis Method for AlN, Mat. Manu. Pro. Tech., 10, (1995) 717-718.
    Z. A. Munir, Synthesis of High Temperature Materials by Self-Propagating Combustion Methods, Cera. Bull., 67, (1988) 342-349.
    G. Selvaduray, and L. Sheet, Aluminum nitride –review synthesis methods, Mater. Sci. Technol., 9, (1993) 463.
    K. Komeya, N. Matsukaze, and T. Meguro, Synthesis of AlN by Direct Nitridation of Al Alloys, J. Cera. Soc. Jap., 101, (1993) 1286-1290.
    J. Subrahmanyam, and M. Vijayakumar, Self-propagating high-temperature synthesis, J. Mater. Sci., 27, (1992) 6249.
    A. G. Merzhanov and I.P. Borovinskaya: A new class of combustion process. Combust. Sci. Technol. 10, (1975) 195.
    Kanthal super Handbook (Kanthal AB, Sweden, 1999).
    Y. Kurokawa, K. Utsumi, H. Takamizawa, Development and microstructural characterization of high-thermal-conductivity aluminum nitride ceramics, J. Am. Ceram. Soc. 71, (1988) 588-594.
    A. V. Virkar, B. T. Jackson, and R. A. Cutler, Thermodynamic and Kinetic effect of oxygen removal on the thermal conductivity of Aluminum Nitride, J. Am. Ceram. Soc., 72, (1989) 2031-2042.
    K. Watari, M. Kawamoto, and K. Ishizaki, Sintering chemical reactions to increase thermal conductivity of AlN, J. Mater. Sci., 26, (1991) 4727-4732.
    M. Hirano, K. Kato, T. Isobe, and T. Hirano, Sintering and characterization of fully dense AlN ceramics, J. Mater. Sci., 28, (1993) 4725-4730.
    Y. D. Yu, A. M. Hundere, R. Høier, R. E. Dunin-Borkowski, and M. A. Einarsrud, Microstructural characterization and microstructural effects on the thermal conductivity of AlN (Y2O3) ceramics, J. Eur. Ceram. Soc. 22, (2002) 247-252.
    A. M. Hundere, and M. –A. Einarsrud, Effects of reduction of the Al-Y-O containing secondary phases during sintering of AlN with YF3 additions, J. Eur. Ceram. Soc., 16, 899-906 (1996).
    L. Qiao, H. Zhou, K. Chen, and R. Fu, Effects of Li2O on the low temperature sintering and thermal conductivity of AlN ceramics, J. Eur. Ceram. Soc. 23, (2003) 1517-1524.
    X. Xu, H. Zhuang, W. Li, S. Xu, B. Zhang, and X. Fu, Improving thermal conductivity of Sm2O3-doped AlN ceramics by changing sintering conditions, Mater. Sci. and Eng. A342, (2003) 104-108.
    K. A. Khor, L. G. Yu, and Y. Murakoshi, Spark plasma sintering of Sm2O3-doped aluminum nitride, J. Eur. Ceram. Soc. 25, (2005) 1057-1065.
    C. U. Hsieh, C. N. Lin, S. L. Chung, J. Cheng, and D. K. Agrawal, Microwave sintering of AlN powder synthesized by a SHS method, J. Eur. Ceram. Soc. 27, (2007) 343-350.
    K. Watari, K. Ishizaki, and T. Fujikawa, Thermal conductivity mechanism of aluminum nitride ceramics, J. Mater. Sci., 27, (1992) 2627-2630.
    A. L. Molisani, H. N. Yoshimura, H. Goldenstein, and K. Watari, Effects of CaCO3 content on the densification of aluminum nitride, J. Eur. Ceram. Soc., 26, (2006) 3431-3440.
    K. Watari, H. J. Hwang, M. Toriyama, and S. Kanzaki, Low-temperature sintering and high thermal conductivity of YLiO2-doped AlN ceramics, J. Am. Ceram. Soc. 79, (1996) 1979.
    L. Qiao, H. P. Zhou, and R. L. Fu, Thermal conductivity of AlN ceramics sintered with CaF2 and YF3, Ceram. Int. 29, (2003) 893-896.
    Y. C. Liu, H. P. Zhou, Y. Wu, L. Oiao, Improving thermal conductivity of aluminum nitride ceramics by refining microstructure, Mater. Lett., 43, (2000) 114-117.
    M. C. Wang, C. C. Yang, N. C. Wu, Densification and structural development in the sintering of AlN ceramics with CaCN2 additives, J. Eur. Ceram. Soc., 21, (2001) 185-2192.
    R. Terao, J. Tatami, T. Meguro, K. Komeya, Fracture behavior of AlN ceramics with rare-earth oxides, J. Eur. Ceram. Soc., 22, (2002) 1051-1059.
    L. Qiao, H. P. Zhou, K. X. Chen, and R. L. Fu, Effects of Li2O on the low temperature sintering and thermal conductivity of AlN ceramics, J. Eur. Ceram. Soc. 23, (2003) 1517.
    A. Franco, D. J. Shanafield, The use of yttrium isopropoxide to improve thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics, J. Mater. Sci.:Mater. Electro. 16, (2005) 139-144.
    T. Kusunose, T. Sekino, and K. Niihara, Production of a grain boundary phase as conducting pathway in insulating AlN ceramics, Acta Mater. 55, (2007) 6170-6175.
    T. Honma, Y. Kuroki, T. Okamoto, M. Takata, Y. Kanechika, M. Azuma, and H. Taniguchi, Transmittance and cathodoluminescence of AlN cramics sintered with Ca3Al2O6 as sintering additive, Ceram. Int. 34, (2008) 943-946.
    S. H. Lee, H. Tanaka, and T. Aoyagi, Densification of AlN using boron and carbon additives, J. Eur. Ceram. Soc. 29, (2009) 2021-2027.
    G. A. Slack, R. A. Tanzill, R. O. Pohl, and J. W. Vandersande, The intrinsic thermal conductivity of AlN, J. Phys. Chem. Solid, 48, (1987) 641-47.
    The American Ceramic Society, Inc., in: Advances in Ceramics, vol.26: Ceramic Substrates and Packages for Electric Application, Eds. Man. F. Yan et al., pp. 19-54.
    S. Bloom, Band Structures of GaN and AlN, J. Phys. Chem. Solids, 32, (1971) 2027.
    K. Komeya, A. Tsuge, H.Inoue, and H. Ohta, Effect of CaCO3 Addition on the Sintering of AlN, J. Mater. Sci. Lett., 1, (1982) 325-26.
    N. Kuramoto, H. Taniguchi, Y. Numata, and I. Aso, Sintering Process of Translucent AlN and Effect of Impurities on Thermal Conductivity of AlN, Yogyo Kyokaishi, 93, (1985) 41-46.
    K. Shinozaki, and A. Tsuge, Development of High Thermal Conductivity AlN, Bull. Ceram. Soc. Jpn, 21, (1986) 1130-35.
    K. Watari, M.C. Valecillos, M. E. Brito, M. Toriyama, and S. Kanzaki, Densification and Thermal Conductivity of AlN Doped with Y2O3, CaO and LiO2, J. Am. Ceram. Soc. 79, (1996) 3103-108.
    D. R. Stull and H. Prophet, JANAF Thermochemical Tables, Second Edition, Natl. Stand. Ref. Data Ser. (U.S. Natl. Bur. Stand.), (1971).
    M. W. Chase, Jr., C. A. Davis, J. R. Dowwnney Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data, suppl. No. 1, (1985) 14.
    Malt 2, Materials-Oriented Little Thermodynamic Database for Personal Computer, Nihon Netu Sokutei Galtukai, Tokyo, Japan.
    A. F. Virkar, T. B. Jackson, and R. A. Cutler, Thermodynamic and Kinetic Effect of Oxygen Removal on the Thermal Conductivity of Aluminium Nitride, J. Am. Ceram. Soc., 72, (1989) 2031-42.
    K. Watari, M. Kawamoto, and K. Ishizaki, Sintering Chemical Reactions to Increase Thermal Conductivity of Aluminium Nitride, J. Mater. Sci., 26, (1991) 4724-32.
    Y. Takeda, S. Ogihara, M. Ura, K. Nakamura, T. Asai, T. Ohkoshi, Y. Matsushita, and K. Maeda, Sintered Aluminium Nitride and Semiconductor Device Using the Same, U.S. Pat. No.4, 540 673, September 10, (1985).
    R. Metselaar, R. Reenis, M. Chen, H. Gorter, and H. T. Hintzen, Surface characterization of chemically treated aluminium nitride powders, J. Euro. Cera. Soc., 15, (1995) 1079-1085.
    Y. Zhang, Effect of surfactant on depressing the hydrolysis process for aluminum nitride powder, Mat. Reas. Bull., 37, (2002) 2393-2400.
    D. Hotza, O. Sahling, and P. Greil, Hydrophobing of aluminum nitride powders, J. Mat. Sci., 30, (1995) 127-132.
    M. Alper, Chemical and Metallurgical Products Towanda, Pennsylvania, 12-29, (1995).
    L. Pauling, The nature of the chemical bond, 3d ed.; p246. Cornell University Press, Ithaca, NY, (1969).
    K. Watari, K. Ishizaki, and T. Fujikawa, Thermal Conduction Mechanism of Aluminium Nitride Ceramics, J. Mater. Sci., 27, (1992) 2627-30.
    K. Watari, K. Ishizaki, and F. Tsuchiya, Phonon-scattering and thermal conduction mechanisms of sintered aluminum nitride ceramics, J. Mater. Sci. 28, (1993) 3709-14.
    E. K. Chang, Aluminum nitride defect chemistry dependence on sintering atmosphere, J. Mat. Sci. lett., 15, (1996) 1580-1581.
    S. Arinaga, K. Shinozaki, and N. Mizutani, in proc. Of Annual Meeting of the Ceramics Society of Japan (Ceramics Society of Japan, Nagoya, Japan, 1994), p. 349.
    E. M. Levin, C. R. Robbins and H. F. McMurolie, Phase Diagrams for Ceramists, The Am. Ceram. Soc., 4th Printing ( 1979 ).
    K. Watari, M. E. Brito, M. Yasuoka, and M. C. Valecikkos, Influence of powder characteristics on sintering process and thermal-conductivity of aluminum nitride ceramics, J. Ceram. Soc. Jap., 103, (1995) 891-900.
    H. Nakano, K. Watari, and K. Urabe, Grain boundary phase in AlN ceramics fired under reducing N2 atmosphere with carbon, J. Eur. Ceram. Soc., 23, (2003) 1761-68.
    N. Hiromi, W. Koji, H. Hiroyuki, U. Kazuyori, Microstructural Chacterization of High Thermal Conductivity Aluminum Nitride Ceramic, Am. Cera. Soc.,85, (2002) 3093-3095.
    M. Kasori, F. Ueno, A. Tsuge, Effects of Transition-Metal Additions on the properties of AlN, J. Am. Cera. Soc., 77, (1994) 1991-2000.
    P. J. Ross, Taguchi techniques for quality engineering, McGraw-Hill second edition (1996).
    G. Taguchi, Y. Yokoyama, and Y. Wu, Quality Engineering Series Vol. 4. Taguchi Method: Design of Experiments, ASI press, (1993).
    R. M. German, Liquid Phase Sintering, Plenum Press Inc. 6-8, (1985).
    W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, Second Edition (1975).
    C. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials, Ph. D. thesis, The Pennsylvania State University, U. S. A., 1990.
    T. B. Serbenyuk, L. I. Aleksandrova, M. I. Zaika, V. V. Ivzhenko, E. F. Kuz’menko, M. G. Loshak, A. A. Marchenko, T. O. Prikhan, V. B. Sverdun, S. V. Tkach, O. I. Boryms’kii, I. P. Fesenko, V. I. Chasnyk, and M. Wend, Structure, mechanical and functional properties of aluminum nitride-silicon carbide ceramic materials, J. superhard materials, 30, (2008) 384-391.
    C. H. Chu, C. P. Lin, S. B. Wen, and Y. H. Shen, Sintering of AlN ceramics by using alumina crucible and MoSi2 heating element at the temperatures of 1650oCand 1700oC, Ceram. Int. 35, 3455 (2009).
    K. Watari, H. J. Hwang, M. Toriyama and S. Kanzaki, Effective sintering aids for low-temperature sintering of AlN ceramics, J. Mater. Res., 14, (1999) 1409-1417.
    K. Watari, M. E. Brito, M. Yasuoka, M.C. Valecillos and S. Kanzaki, Influence of powder characteristics on sintering process and thermal conductivity of aluminum nitride ceramics, J. Ceram. Soc. Japan, 103 (1995) 891-890.
    J. Y. Qiu, Y. Hotta, K. Watari, K. Mitsuishi, and M. Yamazaki, Low-temperature sintering behavior of the nano-sized AlN powder achieved by super-fine grinding mill with Y2O3 and CaO additives, J. Eur. Ceram. Soc. 26, (2006) 385-390.
    J. Y. Qiu, Y. Hotta, and K. Watari, Enhancement of densification and thermal conductivity in AlN ceramics by addition of nano-sized particles, J. Am. Ceram. Soc., 89 (2006) 377-380.
    G. A. Slack, Nonmetallic Crystals with High Thermal Conductivity, J. Phys. Chem. Solids, 34, (1973) 321-335.
    P. S. Baranda, A. K. Knudsen, and E. Ruh, Effect of CaO on the thermal conductivity of aluminum nitride, J. Am. Ceram. Soc. 76, (1993) 1751-1760.
    C. H. Chu, Y. H. Shen, C. P. Lin, and S. B. Wen, Effects of additives of CaO and rare-earth oxides on the sintering behavior of AlN ceramics, J. Korean Phys. Soc. 52, (2008) 1545-1549.
    J. S. Reed, Principles of ceramics processing, second edition, (1995)
    X. L. Li, H. A. Ma, Y. J. Zheng, Y. Liu, G. H. Zuo, W. Q. Liu, J. G. Li, and X. Jia, AlN ceramics prepared by high-pressure sintering with La2O3 as a sintering aid, J. Alloys and compounds 463, (2008) 412-416.
    X. L. Li, H. A. Ma, Y. J. Zheng, Y. Liu, G. H. Zuo, W. Q. Liu, J. G. Li, and X. Jia, AlN ceramics prepared by high-pressure sintering with La2O3 as a sintering aid, J. Alloys and compounds 463, (2008) 412-416.
    X. He, F. Ye, H. Zhang, and L. Liu, Effect of Sm2O3 content on microstructure and thermal conductivity of spark plasma sintered AlN ceramics, J. Alloys and compounds 482, (2009) 3455-348.
    T. Sakai, and M. Iwata, Effect of oxygen on sintering of AlN, J. Mater. Sci., 12, (1977) 1659-1665.
    J. H. Enloe, R. W. Rice, J. W. Lau, R. Kumar, and S. Y. Lee, Microstructural effects on the thermal conductivity of polycrystalline aluminum nitride, J. Am. Ceram. Soc. 74, (1991) 2214-2219.
    V. B. Shipilo, T. V. Rapinchuk, N. A. Shishonok, L. L. Sukhikh, T. S. Bartnitsksys, and D. S. Yakovleva, Sintering aluminum nitride at high pressure, Translated from Poroshkovaya Metallurgiya, 8, (1991) 62-65.
    K. Watari, K. Ishizaki, and T. Fujikawa, Thermal conduction mechanism of aluminum nitride ceramics, J. Mater. Sci., 27, (1992) 2627-2630.
    A. WITEK, M. BOĆKOWSKI, A. PRESZ, M. WRÓBLEWSKI, and S. KRUKOWSKI, W. WŁOSIŃSKI, and K. JABŁOŃSKI, Synthesis of oxygen-free aluminum nitride ceramics, J. Mater. Sci., 33, (1998) 3321-3324.
    W. E. Lee and W. M. Rainforth, Ceramic microstructures: First Edition (1994).
    Y. C. Liu, Y. Wu, and H. P. Zhou, Microstructure of low-temperature sintered AlN, Mater. Lett., 35, 232 (1998).
    A. M. Hundere, and M. A. Einarsrud: Microstructure Development in AlN (YF3) Ceramics. J. Eur. Ceram. Soc. 17, (1997) 873.
    S. Michizono, Y. Saito, S. Yamaguchi, S. Anami, N. Matuda, and A. Kinbara, IEEE Trans. Electrical Insulation 28 (4) (1993) 692.
    K. A. Khor, L. G. Yu, and Y. Murakoshi, Spark plasma sintering of Sm2O3-doped aluminum nitride, J. Eur. Ceram. Soc. 25, (2005) 1057-1065.
    K. F. Cai, D. S. McLachlan, Preparation, microstructure and properties of reaction-bonded AlN ceramics, Mater. Res. Bull. 37 (2002) 575-581.
    L. M. Sheppard, Aluminum Nitride - A Versatile but Challenging Material,Ceram. Bull. 69 (1990) 1801.
    M. C. Wang, C. C. Yang, and N. C. Wu, Grain growth and electric properties of liquid phase sintered AlN ceramics with CaCN2 additives, Mater. Sci. and Eng. A343 (2003) 97-106.
    Z. Y. Fang, Y. C. Liu, Y. Wu, and H. P. Zhou, Microstructure and dielectric dispersion of low-temperature sintered AlN, J. Mater. Sci. Lett. 19, (2000) 95-97.
    G. Ado, M. Billy, P. Guillo, and P. Lefort, French pat. 8320037, 1983.
    S. Burkhardt, R. Riedel, and G. Mueller, Processing and properties of AlN matrix composite ceramics containing dispersed hard materials, J. Eur. Ceram. Soc. 17, (1997) 3-12.
    T. B. Troczynski, and P. S. Nicholson, Effect of additives on the pressureless sintering of aluminum nitride between 1500oC and 1800oC, J. Am. Ceram. Soc., 72, (1989) 1488-1491.
    S. Burkhardt, R. Riedel, and G. Müller, Processing and properties of AlN matrix composite ceramics containing dispersed hard materials, J. Eur. Ceram. Soc. 17 (1997) 3-12.
    S. Kume, M. Yasuoka, S. K. Lee, A. Kan, H. Ogawa, and K. Watari, Dielectric and thermal properties of AlN ceramics, J. Eur. Ceram. Soc. 27 (2007) 2967-2971.
    R. Terao, J. Tatami, T. Meguro, and K. Komeya, Fracture behavior of AlN ceramics with rare earth oxides, J. Eur. Ceram. Soc. 22 (2002) 1051-1059.
    G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. A. Marshall, critical evaluation of indentation techniques for measuring fracture toughness: direct crack measurements. J. Am. Ceram, Soc. 64, (1981) 533-538.
    ASTM C1421-99, Standard test methods for determination of fracture toughness of advanced ceramics at ambient atmosphere, pp. 1-32.

    下載圖示 校內:2011-02-10公開
    校外:2013-02-10公開
    QR CODE