| 研究生: |
李翔宇 Lee, Hsiang-Yu |
|---|---|
| 論文名稱: |
利用核磁共振研究凡德瓦化合物CuCrP2S6 Nuclear magnetic resonance study of van der Waals compound of CuCrP2S6 |
| 指導教授: |
呂欽山
Lue, Chin-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
智慧半導體及永續製造學院 - 關鍵材料學位學程 Program on Key Materials |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 核磁共振 、奈特位移 、凡德瓦化合物 |
| 外文關鍵詞: | NMR, Knight shift, van der Waals compound |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二維(2D)凡德瓦化合物CuCrP2S6有低操作電壓、高開關比、高耐用性和高熱穩定性等優點,適合做開關、記憶體、仿生突觸和太陽能發電等應用。我們以化學氣相傳輸法製備CuCrP2S6單晶,並進行了31P的核磁共振(NMR)研究。
為了探討各向異性效應,我們在外加磁場平行於c軸和平行於ab平面的情況下,測量單晶樣品隨溫度變化的奈特位移。以31P原子核為探測點,透過與Cr3+自旋的交互作用確定了各向異性的超精細耦合。此外,31P NMR譜線揭示了鐵電相變溫度TC1 ≃ 190 K和TC2 ≃ 145 K附近的異常變化。這些觀察結果為Cu+離子的偏好占位提供了證據,而這解釋了CuCrP2S6的多鐵性相變。
We report a 31P nuclear magnetic resonance (NMR) study of van der Waals compound of CuCrP2S6. To explore the anisotropic effects, we have carried out the temperature-dependent Knight shift measurement on the single crystalline specimen with the external field perpendicular and parallel to the c axis. By using the phosphorus nuclear spin as a local probe, we have determined the anisotropic hyperfine coupling through the interactions with the Cr3+ spins. In addition, our temperature-dependent 31P NMR spectra have revealed anomalous features near ferroelectric transition temperatures TC1 ≃ 190 K and TC2 ≃ 145 K. The observations provide evidence for the preferential occupancy of Cu+ cations which is responsible for the multi-ferroelectric transitions in CuCrP2S6.
[1] Y. Liu, X. Duan, H. Shin, S. Park, Y. Huang, and X. Duan, Nature 591, 43–53 (2021).
[2] M. Wu and J. Li, Proc. Natl. Acad. Sci. USA 118 (50), e2115703118 (2021).
[3] C. Zhang, T. Tu, J. Wang, Y. Zhu, C. Tan, L. Chen, M. Wu, R. Zhu, Y. Liu, H. Fu, J. Yu, Y. Zhang, X. Cong, X. Zhou, J. Zhao, T. Li, Z. Liao, X. Wu, K. Lai, B. Yan, P. Gao, Q. Huang, H. Xu, H. Hu, H. Liu, J. Yin, and H. Peng, Nat. Mater. 22, 832–837 (2023).
[4] L. Kong, R. Wu, Y. Chen, Y. Huangfu, L. Liu, W. Li, D. Lu, Q. Tao, W. Song, W. Li, Z. Lu, X. Liu, Y. Li, Z. Li, W. Tong, S. Ding, S. Liu, L. Ma, L. Ren, Y. Wang, L. Liao, X. Duan, and Y. Liu, Nat. Commun. 14, 1014 (2023).
[5] C. Kim, K. Lee, I. Moon, S. Issarapanacheewin, and W. Yoo, Nanoscale 11, 18246-18254 (2019).
[6] T. H. Yang, B. Liang, H. Hu, F. Chen, S. Ho, W. Chang, L. Yang, H. Lo, T. Kuo, J. Chen, P. Lin, K. B. Simbulan, Z. Luo, A. C. Chang, Y. Kuo, Y. Ku, Y. Chen, Y. Huang, Y. Chang, Y. Chiang, T. Lu, M. Lee, K. Li, M. Wu, Y. Chen, C. Lin, and Y. Lan, Nat. Electron 7, 29–38 (2024).
[7] A. K. Geim, and I. V. Grigorieva, Nature 499, 419–425 (2013).
[8] W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, Nat. Commun. 8, 14956 (2017).
[9] C. Kittel, Kittel’s Introduction to Solid State Physics, Wiley, Singapore (2018)
[10] M. P. Marder, Condensed Matter Physics, Wiley, New Jersey (2015).
[11] S. Blundell, Magnetism in Condensed Matter, Oxford University Press. New York (2001).
[12] G. George, S. R. Ede, and Z. Luo, Fundamentals of Perovskite Oxides, CRC Press, Florida (2020).
[13] R. Brec, Solid State Ionics 22 (1), 3–30 (1986).
[14] C. Berthier, Y. Chabre, and P. Segransan, Physica B+C 99 (1–4), 107–116 (1980).
[15] 陳致傑,利用核磁共振技術探討層狀反鐵磁材料MnPS3與FePS3之磁性特性,成功大學物理學系碩士論文 (2020).
[16] A. P. Dioguardi, S. Selter, U. Peeck, S. Aswartham, M.-I. Sturza, R. Murugesan, M. S. Eldeeb, L. Hozoi, B. Büchner, and H.-J. Grafe, Phys. Rev. B 102 (6), 064429 (2020).
[17] C. Kittel, Phys. Rev. 82 (5), 729–732 (1951).
[18] C. A. Randall, Z. Fan, I. Reaney, L. Chen, and S. Trolier-McKinstry, J. Am. Ceram. Soc. 104 (8), 3775–3810 (2021).
[19] A. Chauhan, S. Patel, R. Vaish, and C. R. Bowen, Materials 8 (12), 8009–8031 (2015).
[20] X. Lyu, M. Si, X. Sun, M. A. Capano, H. Wang, and P. D. Ye, IEEE Symp. VLSI Technol., T44–T45 (2019).
[21] Y.-C. Chen, K.-Y. Hsiang, Y.-T. Tang, M.-H. Lee, and P. Su, IEEE Int. Electron Devices Meet., 15.4.1–15.4.4 (2021).
[22] K.-Y. Hsiang, C.-Y. Liao, J.-H. Liu, J.-F. Wang, S.-H. Chiang, S.-H. Chang, F.-C. Hsieh, H. Liang, C.-Y. Lin, Z.-F. Lou, T.-H. Hou, C. W. Liu, and M. H. Lee, IEEE Electron Device Lett. 42 (10), 1464–1467 (2021).
[23] K.-Y. Hsiang, Y.-C. Chen, F.-S. Chang, C.-Y. Lin, C.-Y. Liao, Z.-F. Lou, J.-Y. Lee, W.-C. Ray, Z.-X. Li, C.-C. Wang, H.-C. Tseng, P.-H. Chen, J.-H. Tsai, M. H. Liao, T.-H. Hou, C. W. Liu, P.-T. Huang, P. Su, and M. H. Lee, IEEE Int. Electron Devices Meet., 32.5.1–32.54 (2022).
[24] K.-Y. Hsiang, C.-Y. Liao, Y.-Y. Lin, Z.-F. Lou, C.-Y. Lin, J.-Y. Lee, F.-S. Chang, Z.-X. Li, H.-C. Tseng, C.-C. Wang, W.-C. Ray, T.-H. Hou, T.-C. Chen, C.-S. Chang, and M. H. Lee, IEEE Int. Reliab. Phys. Symp., P9-1–P9-4 (2022).
[25] K.-Y. Hsiang, C.-Y. Liao, J.-H. Liu, C.-Y. Lin, J.-Y. Lee, Z.-F. Lou, F.-S. Chang, W.-C. Ray, Z.-X. Li, H.-C. Tseng, C.-C. Wang, M. H. Liao, T.-H. Hou, and M. H. Lee, IEEE Electron Device Lett. 43 (11), 1850–1853 (2022).
[26] C.-Y. Liao, K.-Y. Hsiang, Z.-F. Lou, C.-Y. Lin, Y.-J. Tseng, H.-C. Tseng, Z.-X. Li, W.-C. Ray, F.-S. Chang, C.-C. Wang, T.-C. Chen, C.-S. Chang, and M. H. Lee, IEEE Trans. Ultrason., Ferroelectric., Freq. Control 69 (6), 2214‒2221 (2022).
[27] M. Pešić, U. Schroeder, S. Slesazeck, and T. Mikolajick, IEEE Trans. Device Mater. Reliab. 18 (2), 154–162 (2018).
[28] K. Ni, J. Smith, H. Ye, B. Grisafe, G. B. Rayner, A. Kummel, and S. Datta, IEEE Int. Electron Devices Meet., 28.8.1–28.8.4 (2019).
[29] S.-C. Chang, N. Haratipour, S. Shivaraman, T. L. Brown-Heft, J. Peck, C.-C. Lin, I.-C. Tung, D. R. Merrill, H. Liu, C.-Y. Lin, F. Hamzaoglu, M. V Metz, I. A Young, J. Kavalieros, and U. E. Avci, IEEE Int. Electron Devices Meet., 28.1.1–28.1.4 (2020).
[30] Y. Mathey, H. Mercier, A. Michalowicz, and A. Leblanc, J. Phys. Chem. Solids 46 (9), 1025–1029 (1985).
[31] V. Maisonneuve, V. B. Cajipe, and C. Payen, Chem. Mater. 5 (6), 758–760 (1993).
[32] V. B. Cajipea, J. Ravez, V. Maisonneuve, A. Simon, C. Payen, R. Von Der Muhll, and J. E. Fischer, Ferroelectrics 185 (1), 135–138 (1996).
[33] K. Moriya, N. Kariya, A. Inaba, T. Matsuo, I. Pritz, and Y. M. Vysochanskii, Solid State Commun. 136 (3), 173–176 (2005).
[34] S. Aoki, Y. Dong, Z. Wang, X. S.W. Huang, Y. M. Itahashi, N. Ogawa, T. Ideue, and Y. Iwasa, Adv. Mater. 36 (21), 2312781 (2024).
[35] P. Colombet, A. Leblanc, M. Danot, and J. Rouxel, J. Solid State Chem. 41 (2), 174–184 (1982).
[36] J. Qi, H. Wang, X. Chen, and X. Qian, Appl. Phys. Lett. 113, 043102 (2018).
[37] S. Selter, K. K. Bestha, P. Bhattacharyya, B. Özer, Y. Shemerliuk, M. Roslova, E. Vinokurova, L. T. Corredor, L. Veyrat, A. U. B. Wolter, L. Hozoi, B. Büchner, and S. Aswartham, Phys. Rev. Mater. 7, 033402 (2023).
[38] X. Wang, Z. Shang, C. Zhang, J. Kang, T. Liu, X. Wang, S. Chen, H. Liu, W. Tang, Y.-J. Zeng, J. Guo, Z. Cheng, L. Liu, D. Pan, S. Tong, B. Wu, Y. Xie, G. Wang, J. Deng, T. Zhai, H.-X. Deng, J. Hong, and J. Zhao, Nat. Commun. 14, 840 (2023).
[39] C. B. Park, A. Shahee, K.-T. Kim, D. R. Patil, S. A. Guda, N. Ter-Oganessian, and K. H. Kim, Adv. Electron. Mater. 8 (6), 2101072 (2022).
[40] M. A. Susner, R. Rao, A. T. Pelton, M. V. McLeod, and B. Maruyama, Phys. Rev. Mater. 4, 104003 (2020).
[41] W. F. Io, S.-Y. Pang, L. W. Wong, Y. Zhao, R. Ding, J. Mao, Y. Zhao, F. Guo, S. Yuan, J. Zhao, J. Yi, and J. Hao, Nat. Commun. 14, 7304 (2023).
[42] Y. Ma, Y. Yan, L. Luo, S. Pazos, C. Zhang, X. Lv, M. Chen, C. Liu, Y. Wang, A. Chen, Y. Li, D. Zheng, R. Lin, H. Algaidi, M. Sun, J. Z. Liu, S. Tu, H. N. Alshareef, C. Gong, M. Lanza, F. Xue, and X. Zhang, Nat. Commun. 14, 7891 (2023).
[43] Y. Lai, Z. Song, Y. Wan, M. Xue, C. Wang, Y. Ye, L. Dai, Z. Zhang, W. Yang, H. Dua, and J. Yangace, Nanoscale 11, 5163–5170 (2019).
[44] K. Cho, S. Lee, R. Kalaivanan, R. Sankar, K.-Y. Choi, and S. Park, Adv. Funct. Mater. 32 (36), 2204214 (2022).
[45] P. Liu, Y. Li, D. Hou, H. Zhu, H. Luo, S. Zhou, L. Wei, W. Niu, Z. Sheng, W. Mao, and Y. Pu, Appl. Phys. Lett. 124 (9), 091901 (2024).
[46] 呂欽山、賴文振,物理雙月刊 26 (3),519–522 (2004).
[47] 汪建民、中國材料科學學會,材料分析,中國材料科學學會,新竹 (2005).
[48] 益田義賀、賴耿陽,核磁共振的基礎,復漢出版社,台南 (1991).
[49] A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, New York (1983).
[50] J.F. Hinton, Annu. Rep. NMR Spectrosc. 19, 1–34 (1987).
[51] J. Malito, Annu. Rep. NMR Spectrosc. 38, 265–287 (1999).
[52] D. L. Bryceab, and R. E. Wasylishen, Phys. Chem. Chem. Phys. 3 (23), 5154–5157 (2001).
[53] W. Zhang, B. E. G. Lucier, V. V. Terskikh, S. Chen, and Y. Huang, Chem. Sci. 15 (18), 6690–6706 (2024).
[54] C. Berthier, Y. Chabre, and M. Minier, Solid State Commun. 28 (4), 327–332 (1978).
[55] K. N. Shrivastava, Phys. Rev. B 20 (7), 2634–2636 (1979).
[56] M. Binnewies , R. Glaum , M. Schmidt, and P. Schmidt, Chemical Vapor Transport Reactions, De Gruyter, Berlin (2012).
[57] C. Hammond, The Basics of Crystallography and Diffraction, Oxford University Press, New York (2009).
[58] E. L. Hahn, Phys. Rev. 80 (4), 580–594 (1950).
校內:2026-07-31公開