| 研究生: |
施鴻鳳 Shih, Hung-Feng |
|---|---|
| 論文名稱: |
研究IRSp53參與在SW620大腸癌細胞的生長角色 Participation of IRSp53 in cell proliferation of SW620 colon cancer cells |
| 指導教授: |
呂增宏
Leu, Tzeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 大腸癌細胞 |
| 外文關鍵詞: | Eps8, IRSp53 |
| 相關次數: | 點閱:117 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Eps8(EGF receptor pathway substrate NO.8)是EGFR與Src的受質,具有97KDa及68KDa兩種isoforms。先前我們實驗室發現在人類的大腸癌細胞株(SW620)中,p97Eps8有大量表達的情形,並且p97Eps8會促進大腸癌細胞SW620的細胞生長。於是我們想要瞭解Eps8之結合蛋白質IRSp53是否也參與在Eps8所調控之大腸癌細胞的細胞增生過程中,首先我們觀察在人類的大腸癌細胞株中IRSp53的表現情形,發現在一些大腸癌細胞株中(包括SW620)有不同的IRSp53表達量,接著我們利用Co-IP實驗方法進一步確認了在SW620和WiDr細胞中,IRSp53的確會與Eps8 結合。此外,利用外送IRSp53,IRSp58以及IRSp53-△363 (缺乏C端和Eps8結合區域之序列)到NIH3T3細胞中,發現IRSp53和IRSp58會促進細胞在soft agar上之 colonies的形成而IRSp53-△363則不會,而我們同時送入Eps8和IRSp53則發現Eps8可以加成此作用。結果顯示IRSp53和Eps8的交互作用對於細胞轉型能力是重要的。接著我們進一步將表達IRSp53 siRNA的DNA plasmid 送入SW620大腸癌細胞中去建立IRSp53 siRNA的SW620細胞株,觀察細胞在IRSp53 down-regulation 之下,其對於細胞的生長及致癌能力的作用有何影響。我們發現當SW620細胞中的IRSp53表現受抑制時, Akt Pi-Ser473,cyclin D1和cyclin E也有顯著的下降,並且也發現表現IRSp53 siRNA之SW620細胞的生長不論在culture dish,或在soft agar上都會受到明顯抑制。因此,由以上結果我們認為IRSp53 可能參與在調控人類大腸癌細胞SW620之細胞生長的作用中。
Eps8 (EGF receptor pathway substrate NO.8) is a substrate of both EGFR and Src. It exists in two isoforms p97EPS8 and p68Eps8 in many cell lines. Our previous studies indicated that only the 97-kDa isoform was expressed and promoted cell proliferation of SW620 cells. To understand whether Eps8-interacting protein, IRSp53 is involved in Eps8-mediated cell proliferation of colon cancer cells, first, we observed that expression of IRSp53 is varied in several colon cancer cell lines including SW620. Then we confirmed the interaction between Eps8 and IRSp53 in SW620 and WiDr cells by co-immunoprecipitation. In addition, transient overexpression of myc-tagged IRSp53 and IRSp58 but not IRSp53-△363 (Eps8 binding region deletion) in NIH3T3 cells increased colony formation in soft agar. We also observed that co-transfection of Eps8 and IRSp53 into NIH3T3 cells could synergistically enhanced the number of colony formed in soft agar. These data indicated that the association between IRSp53 and Eps8 could be important for cell transforming ability. Moreover, we utilized small interference RNA (siRNA) technology to generate SW620 cell lines stably expressing IRSp53 siRNA or nonspecific control siRNA and observed that the expression of IRSp53, Akt Pi-Ser473, cyclin D1 and cyclin E is reduced in these cells. Furthermore, the growth rate and the ability of anchorage independent growth were reduced in IRSp53 siRNA expressing cells. Therefore, our results indicated that IRSp53 may participate in cell proliferation of human colon cancer cell SW620.
參考文獻(Reference)
Alvarez CE, Sutcliffe JG, Thomas EA.(2002). Novel isoform of insulin receptor substrate p53/p58 is generated by alternative splicing in the CRIB/SH3-binding region. J Biol Chem 277, 24728-24734.
Bernstein et al. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366.
Biesova Z, Piccoli C and Wong WT. (1997). Isolation and characterization of e3B1, an Eps8 binding protein that regulates cell growth. Oncogene 14, 233-241.
Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT , Di Fiore PP. (1993). Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J 12, 3799-3808.
Fire et al. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
Fujiwara T, Mammoto A, Kim Y, Takai Y.(2000). Rho small G-protein-dependent binding of mDia to an Src homology 3 domain-containing IRSp53/BAIAP2. Biochem Biophys Res Commun 271, 626-629.
Funato Y, Terabayashi T, Suenaga N, Seiki M, Takenawa T, Miki H.(2004). IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Research 64, 5237-5244.
Gallo R, Provenzano C, Carbone R, Di Fiore PP, Castellani L, Falcone G, and Alema S. (1997). Regulation of the tyrosine kinase substrate Eps8 expression by growth factors, v-Src and terminal differentiation. Oncogene 15, 1929-1936.
Govind S, Kozma R, Monfries C, Lim L, Ahmed S.(2001). Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. J Cell Biol 152, 579-594.
Innocenti M, Frittoli E, Ponzanelli L, Falck JR, Bracmann SM and Di Fiore PP.(2003). Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J Cell Biol 160,17-23.
Karlsson T, Songyang Z, Landgren E, Lavergne C, Di Fiore PP, Anafi M, Pawson T, Cantley LC, Claesson-Welsh L and Welsh M. (1995). Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins. Oncogene 10,1475-1483.
Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A.( 2001). Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr Biol 11, 1645-1655.
Leu TH, Yen HH, Huang CC, Chuang YC, Su SL and Maa MC. (2004). Participation of p97Eps8 in Src-mediated transformation. J Biol Chem 279, 9875-9881.
Maa MC, Lai JR, Lin RW and Leu TH. (1999). Enhancement of tyrosyl phosphorylation and protein expression of Eps8 by v-Src. Biochim. Biophys. Acta 1450, 341-351.
Maa MC, Hsieh CY and Leu TH. (2001). Overexpression of p97Eps8 leads to cellular transformation : implication of pleckstrin homology domain in p97Eps8–mediated ERK activation. Oncogene 19,106-112.
Maa MC, Lee JC, Chen YJ, Chen YJ, Lee YC, Wang ST, Huang CC, Chow NH, Leu TH.(2007). EPS8 Facilitates Cellular Growth and Motility of Colon Cancer Cells by Increasing the Expression and Activity of Focal Adhesion Kinase. J Biol Chem 282,19399-19409.
Mary-Alice Abbott,David G. Wells, Justin R. (1999). Fallon1 The Insulin Receptor Tyrosine Kinase Substrate p58/53 and the Insulin Receptor Are Components of CNS Synapses. J Neurosci 19, 7300–7308.
Matoskova B, Wong WT, Salcini AE, Pelicci PG and Di Fiore PP. (1995). Constitutive phosphorylation of Eps8 in tumor cell lines : relevance to malignant transformation. Mol Cell Biol 15, 3805-3812.
Matoskova B, Wong WT, Seki N, Nagase T, Nomura N, Robbins KC and Di Fiore PP. (1996). RN-tre identifies a family of tre-related proteins displaying a novel potential protein binding domain. Oncogene 12,2563-2571.
Matoskova B, Wong WT, Nomura N, Robbins KC and Di Fiore PP. (1996). RN-tre specifically binds to the SH3 domain of eps8 with high affinity and confers growth advantage to NIH3T3 upon carboxy-terminal truncation. Oncogene 12, 2679–2688.
Miki H, Yamaguchi H, Suetsugu S, Takenawa T. (2000). IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732-735.
Millard TH, Bompard G, Heung MY, Dafforn TR, Scott DJ, Machesky LM, Futterer K.( 2005). Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J 24,240-250.
Miyahara A, Okamura-Oho Y, Miyashita T, Hoshika A, Yamada M. (2003). Genomic structure and alternative splicing of the insulin receptor tyrosine kinase substrate of 53-kDa protein. J Hum Genet 48, 410-414.
Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, Takeda T, Tadokoro K, Kondo I, Murayama N, et al. (1994). Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet 6, 14-18.
Nakagawa H, Miki H, Nozumi M, Takenawa T, Miyamoto S, Wehland J, Small JV. (2003). IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena. J Cell Sci 15, 2577-2583.
Ning Gao, Daniel C. Flynn, Zhuo Zhang, Xiao-Song Zhong, Valerie Walker, Ke Jian Liu, Xianglin Shi, Bing-Hua Jiang.(2004). G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol 287,281-291.
Oda K, Shiratsuchi T, Nishimori H, Inazawa J, Yoshikawa H, Taketani Y, Nakamura Y, Tokino T.( 1999). Identification of BAIAP2 (BAI-associated protein 2), a novel human homologue of hamster IRSp53, whose SH3 domain interacts with the cytoplasmic domain of BAI1. Cytogenet Cell Genet 84, 75-82.
Okamura-Oho Y, Miyashita T, Ohmi K, Yamada M. (1999 ) Dentatorubral-pallidoluysian atrophy protein interacts through a proline-rich region near polyglutamine with the SH3 domain of an insulin receptor tyrosine kinase substrate. Hum Mol Genet 8, 947-957.
Okamura-Oho Y, Miyashita T, Yamada M.( 2001). Distinctive tissue distribution and phosphorylation of IRSp53 isoforms. Biochem Biophys Res Commun 21, 957-960.
Rita Gallo, Claudia Provenzano, Roberta Carbone, Pier Paolo Di Fiore, Loriana Castellani, Germana Falcone & Stefano Alemà. (1997). Regulation of the tyrosine kinase substrate Eps8 expression by growth factors, v-Src and terminal differentiation. Oncogene 15,1929-1936.
Rohatgi, R. et al. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221-231.
Scita G, Nordstrom J, Carbone R, Tenca P, Giardina G, Gutkind S, Bjarnegard M, Betsholtz C and Di Fiore PP. (1999). Eps8 and E3B1 transduce signals from Ras to Rac. Nature 401,290-293.
Scita G, Tenca P, Areces LB, Tocchetti A, Frittoli E, Giardina G, Ponzanelli I, Sini P, Innocenti M and Di Fiore PP. (2001). An effector region in Eps8 is responsible for the activation of the Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin- polymerizing machine. J Cell Biol 154, 1031-1044.
Thomas EA, Foye PE, Alvarez CE, Usui H, Sutcliffe JG. (2001). Insulin receptor substrate protein p53 localization in rats suggests mechanism for specific polyglutamine neurodegeneration. Neurosci Lett 309, 145-148.
Wen Liu, Juhi Bagaitkar, Kounosuke Watabe(2007). Roles of AKT signal in breast cancer. Bioscience 12, 4011-4019.
Wong WT, Carlomagno F, Druck T, Barletta C, Croce CM, Huebner K, Kraus MH, and Di Fiore PP. (1994). Evolutionary conservation of the eps8 gene and its mapping to human chromosome 12q23-q24. Oncogene 9, 3057-3061.
Yeh TC, Ogawa W, Danielsen AG, Roth RA. (1996). Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyrosine kinase. J Biol Chem 271, 2921–2928.
Zamore et al. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33.