簡易檢索 / 詳目顯示

研究生: 王睿承
Wang, Jui-Cheng
論文名稱: 卜特蘭石灰石水泥(PLC)低碳混凝土梁耐震性能研究
Seismic Performance of Low-Carbon Concrete Beams Utilizing Portland Limestone Cement (PLC)
指導教授: 劉光晏
Liu, Kuang-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 277
中文關鍵詞: 卜特蘭石灰石水泥混凝土鋼筋混凝土梁反覆載重實驗耐震性能非線性靜力側推分析
外文關鍵詞: Portland Limestone Cement Concrete (PLC), Reinforced Concrete Beam, Cyclic Loading Test, Seismic Performance, Nonlinear Static Pushover Analysis
相關次數: 點閱:17下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 混凝土是全球第二大消耗品,水泥生產所排放的二氧化碳更占全球溫室氣體總排放量約 8 %。隨著全球二氧化碳濃度日益攀升,各國政府積極推動碳減排政策。我國亦已通過《氣候變遷因應法》,目標在2050年達成淨零碳排放。由於水泥業屬於碳排放密集產業,因此產業界積極尋求可有效降低碳排的替代材料,其中卜特蘭石灰石水泥(PLC)具有降低製程碳排放之優勢,提供工程界降低碳排放的其中一個方法。
    本研究旨在探討卜特蘭石灰石水泥混凝土(PLC)梁構件的耐震性能。本研究製作兩種材料梁試體,包括一般卜特蘭水泥混凝土(OPC)與PLC混凝土,設計兩種不同剪跨比(2與4)的梁試體進行反覆側推實驗,實驗變因為混凝土材料以及梁的剪力跨度比,以評估其耐震性能。
    實驗結果顯示,卜特蘭石灰石水泥混凝土在抗壓強度及方面與傳統卜特蘭一型混凝土表現相近,並且彈性模數與建築物混凝土結構設計規範所建議的公式相近。綜合試體裂縫發展、遲滯迴圈、包絡線、各項耐震性能評估,卜特蘭石灰石水泥混凝土在梁構件耐震性能表現上與一般卜特蘭水泥混凝土無顯著差異,且PLC具有降低碳排放之優勢,顯示其作為低碳結構材料的可行性與可靠性。並且使用結構分析軟體ETABS搭配TEASPA與SERCB之模擬結果與實驗數據比較顯示,兩者皆能有效預測PLC與OPC試體的整體側向力-位移行為趨勢。
    綜合而言,研究驗證了PLC混凝土在實現低碳減排目標同時,並且具有與OPC混凝土製成的梁構件相同的耐震性能,提供業界推廣低碳混凝土結構應用的重要依據。

    The cement industry is the third-largest industrial energy consumer globally, accounting for approximately 6–7% of global anthropogenic carbon dioxide emissions and about 5% of man-made greenhouse gas emissions. Taiwan aims to achieve net-zero carbon emissions by 2050, and as the cement industry is a major domestic emitter, industry stakeholders have begun local research initiatives based on domestic and international findings. Recently, a low-carbon concrete using Portland Limestone Cement (PLC) has been proposed. According to prior studies, this material exhibits mechanical and durability behavior comparable to conventional Ordinary Portland Cement (OPC) concrete. In 2022, the national standard CNS 15286 was updated to include PLC, allowing up to 15% limestone powder content. Literature shows that replacing approximately 15% of clinker with limestone powder can reduce carbon dioxide emissions by about 12% on average.
    To further understand the structural behavior of reinforced concrete made with PLC, a cyclic loading test on column specimens was conducted. The test included two OPC concrete columns as the control group and two PLC concrete columns as the experimental group. The variables were the type of concrete and axial load ratios of 10% and 30%. All columns were designed according to current building codes, with identical configurations aside from the defined variables.
    The experimental results indicate that the compressive strength development of PLC concrete is similar to that of OPC concrete. Furthermore, the measured elastic modulus of PLC concrete aligns well with the values predicted by Taiwan's building structural design code. Comprehensive observations of crack development, hysteresis loops, envelope curves, and various seismic performance indicators, including bilinear idealization per FEMA 356 and performance evaluation per ACI 374.1-05, demonstrate that PLC and OPC concrete columns exhibit comparable structural behavior. Both materials provide reliable seismic performance. Additionally, numerical simulations using TEASPA+ETABS or SERCB+ETABS can accurately reproduce the force-displacement behavior observed in the experiments.

    摘要 I ABSTRACT II 致謝 XI 目錄 XIII 表目錄 XVI 圖目錄 XX 第1章 緒論 1 1.1 研究動機目的 1 1.2 研究方法與內容 5 第2章 文獻回顧 7 2.1 何謂石灰石 7 2.2 卜特蘭石灰石水泥 7 2.3 卜特蘭石灰石水泥混凝土的材料行為 8 2.3.1 添加石灰石粉於水泥基材的作用機理 8 2.3.2 卜特蘭石灰石水泥混凝土新拌性質 14 2.3.3 卜特蘭石灰石水泥混凝土力學行為 20 2.4 卜特蘭石灰石水泥混凝土相關之結構實驗 27 2.4.1 石灰石水泥混凝土於極端環境下鋼筋握裹行為探討 27 2.4.2 石灰石煅燒黏土複合水泥混凝土梁抗剪行為 30 2.5 鋼筋混凝土梁非線性側推分析 33 2.5.1 TEASPA(臺灣結構耐震評估側推分析法) 33 2.5.2 SERCB(鋼筋混凝土建築物耐震能力詳細評估) 35 第3章 實驗規劃 43 3.1 前言 43 3.2 鋼筋混凝土梁試體設計 45 3.2.1 試體設計 45 3.2.2 混凝土材料 48 3.2.3 鋼筋應變計配置 62 3.3 材料試驗配置 64 3.3.1 混凝土試驗 64 3.3.2 鋼筋拉伸試驗 66 3.4 試體施作 66 3.4.1 鋼筋應變計黏貼 66 3.4.2 基礎施作 74 3.4.3 梁身與擴頭段施作 81 3.5 反覆載重實驗規劃 90 第4章 實驗結果與討論 94 4.1 前言 94 4.2 材料實驗 94 4.2.1 混凝土試驗結果 94 4.2.2 鋼筋拉伸試驗結果 109 4.3 反覆載重實驗 113 4.3.1 試體裂縫發展 113 4.3.2 試體力與位移關係行為 157 4.3.3 ACI374.1-05耐震性能評估 204 4.3.4 鋼筋應變計讀數 208 第5章 分析與模擬 219 5.1 前言 219 5.2 試體包絡線與TEASPA輔助ETABS側推分析比較 219 5.2.1 分析設定 219 5.2.2 分析結果 224 5.3 試體包絡線與SERCB輔助ETABS側推分析比較 230 5.3.1 分析設定 230 5.3.2 分析結果 234 第6章 結論與建議 240 6.1 結論 240 6.2 建議 241 參考文獻 242

    [1] Buis, A., "The atmosphere: getting a handle on carbon dioxide," NASA Global Climate Change, 2019. [Online]. Available: https://science.nasa.gov/earth/climate-change/greenhouse-gases/the-atmosphere-getting-a-handle-on-carbon-dioxide/
    [2] P. J. M. Monteiro, S. A. Miller, and A. Horvath, "Towards sustainable concrete," Nature Materials, vol. 16, no. 7, pp. 698-699, 2017/07/01 2017, doi: 10.1038/nmat4930.
    [3] 蔣本基、李志賢、張章堂、陳耀德、簡又新,「水泥業淨零轉型精進策略」,工業污染防治,2023,第159期,65–88頁。
    [4] E. Benhelal, G. Zahedi, E. Shamsaei, and A. Bahadori, "Global strategies and potentials to curb CO2 emissions in cement industry," Journal of cleaner production, vol. 51, pp. 142-161, 2013.
    [5] 陳志賢、詹忠榮、王志祺、曾昱中,「亞泥邁向淨零碳排-成為綠色家園夥伴」,營建知訊,2022,第476期,41–51頁。
    [6] 鄒思宇,「混凝土淨零排放的國際發展趨勢及技術」,營建知訊,2024,第491期,23–38頁。
    [7] 陳育聖、許瑞紋、梁喬茵,「石灰石水泥混凝土國際減碳發展與國內應用瓶頸」,營建知訊,2023,第491期,23–38頁。
    [8] M. S. Meddah, M. C. Lmbachiya, and R. K. Dhir, "Potential use of binary and composite limestone cements in concrete production," Construction and Building Materials, vol. 58, pp. 193-205, 2014, doi: 10.1016/j.conbuildmat.2013.12.012.
    [9] D. K. Panesar and R. Zhang, "Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials – A review," Construction and Building Materials, vol. 251, 2020, doi: 10.1016/j.conbuildmat.2020.118866.
    [10] Global Cement and Concrete Association, "Global Cement and Concrete Association." [Online]. Available: https://gccassociation.org
    [11] 《施工綱要規範第03050章 混凝土基本材料及施工一般要求(修正草案V13.2版)》,內政部國土署,2025。
    [12] CNS 15286「水硬性混合水泥」,中華民國國家標準,2022。
    [13] 鐘廣吉,《臺灣的石灰岩》,遠足文化,2008。
    [14] D. P. Bentz et al., "Multi-scale investigation of the performance of limestone in concrete," Construction and Building Materials, vol. 75, pp. 1-10, 2015, doi: 10.1016/j.conbuildmat.2014.10.042.
    [15] 環境與經濟帳。經濟部統計處。取自:https://www.moea.gov.tw/Mns/dos/content/Content.aspx?menu_id=42671
    [16] [16] 經濟部地質調查及礦業管理中心. "石灰岩Limestone." 經濟部地質調查及礦業管理中心. https://twgeoref.gsmma.gov.tw/GipOpenWeb/wSite/ct?xItem=146478&ctNode=1233&mp=105 (accessed.
    [17] 陳其瑞,《臺灣的大理石》,中央地質調查所,政府出版品展售中心,1996。
    [18] 「水泥製造工序」,中國西部水泥有限公司,取自:http://www.westchinacement.com/big5/products/process.htm
    [19] 「水泥製作過程詳解」,優分析UAnalyze。取自:https://uanalyze.com.tw/articles/501174154
    [20] 「水泥製程」,東南水泥股份有限公司,取自:http://www.southeastcement.com.tw/index.php?q=node/27
    [21] D. Wang, C. Shi, N. Farzadnia, Z. Shi, H. Jia, and Z. Ou, "A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures," Construction and Building Materials, vol. 181, pp. 659-672, 2018, doi: 10.1016/j.conbuildmat.2018.06.075.
    [22] 馬齊文,「石灰石粉取代飛灰添加於混凝土之可行性與具體建議」,混凝土科技,2024,第21期,85–95頁。
    [23] CNS 61「卜特蘭水泥」,中華民國國家標準,2021。
    [24] G. De Schutter, "Effect of limestone filler as mineral addition in self-compacting concrete," in 36th Conference on Our World in Concrete & Structures:'Recent Advances in the Technology of Fesh Concrete'(OWIC'S 2011), 2011: Ghent University, Department of Structural engineering, pp. 49-54.
    [25] E. F. Irassar, "Sulfate attack on cementitious materials containing limestone filler — A review," Cement and Concrete Research, vol. 39, no. 3, pp. 241-254, 2009/03/01/ 2009, doi: https://doi.org/10.1016/j.cemconres.2008.11.007.
    [26] S. Rode, N. Oyabu, K. Kobayashi, H. Yamada, and A. Kühnle, "True Atomic-Resolution Imaging of (101̅4) Calcite in Aqueous Solution by Frequency Modulation Atomic Force Microscopy," Langmuir, vol. 25, no. 5, pp. 2850-2853, 2009/03/03 2009, doi: 10.1021/la803448v.
    [27] 社團法人台灣混凝土學會,《PLC使用手冊》,2024。
    [28] K. Vance, M. Aguayo, T. Oey, G. Sant, and N. Neithalath, "Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin," Cement and Concrete Composites, vol. 39, pp. 93-103, 2013, doi: 10.1016/j.cemconcomp.2013.03.028.
    [29] P. Thongsanitgarn, W. Wongkeo, A. Chaipanich, and C. S. Poon, "Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size," Construction and Building Materials, vol. 66, pp. 410-417, 2014/09/15/ 2014, doi: https://doi.org/10.1016/j.conbuildmat.2014.05.060.
    [30] V. M. John, B. L. Damineli, M. Quattrone, and R. G. Pileggi, "Fillers in cementitious materials — Experience, recent advances and future potential," Cement and Concrete Research, vol. 114, pp. 65-78, 2018/12/01/ 2018, doi: https://doi.org/10.1016/j.cemconres.2017.09.013.
    [31] K. De Weerdt, K. O. Kjellsen, E. Sellevold, and H. Justnes, "Synergy between fly ash and limestone powder in ternary cements," Cement and Concrete Composites, vol. 33, no. 1, pp. 30-38, 2011/01/01/ 2011, doi: https://doi.org/10.1016/j.cemconcomp.2010.09.006.
    [32] S. Chandra and P. Flodin, "Interactions of polymers and organic admixtures on portland cement hydration," Cement and Concrete Research, vol. 17, no. 6, pp. 875-890, 1987/11/01/ 1987, doi: https://doi.org/10.1016/0008-8846(87)90076-7.
    [33] C. Jolicoeur and M.-A. Simard, "Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts," Cement and Concrete Composites, vol. 20, no. 2, pp. 87-101, 1998/01/01/ 1998, doi: https://doi.org/10.1016/S0958-9465(97)00062-0.
    [34] B. Lothenbach, G. Le Saout, E. Gallucci, and K. Scrivener, "Influence of limestone on the hydration of Portland cements," Cement and Concrete Research, vol. 38, no. 6, pp. 848-860, 2008/06/01/ 2008, doi: https://doi.org/10.1016/j.cemconres.2008.01.002.
    [35] L. Courard and F. Michel, "Limestone fillers cement based composites: Effects of blast furnace slags on fresh and hardened properties," Construction and Building Materials, vol. 51, pp. 439-445, 2014, doi: 10.1016/j.conbuildmat.2013.10.076.
    [36] R. Derabla and M. L. Benmalek, "Characterization of heat-treated self-compacting concrete containing mineral admixtures at early age and in the long term," Construction and Building Materials, vol. 66, pp. 787-794, 2014/09/15/ 2014, doi: https://doi.org/10.1016/j.conbuildmat.2014.06.029.
    [37] S. A. Rizwan and T. A. Bier, "Blends of limestone powder and fly-ash enhance the response of self-compacting mortars," Construction and Building Materials, vol. 27, no. 1, pp. 398-403, 2012/02/01/ 2012, doi: https://doi.org/10.1016/j.conbuildmat.2011.07.030.
    [38] S. Tongaroonsri and S. Tangtermsirikul, "Effect of mineral admixtures and curing periods on shrinkage and cracking age under restrained condition," Construction and Building Materials, vol. 23, no. 2, pp. 1050-1056, 2009/02/01/ 2009, doi: https://doi.org/10.1016/j.conbuildmat.2008.05.023.
    [39] P. Hawkins, P. D. Tennis, and R. J. Detwiler, The use of limestone in Portland cement: a state-of-the-art review. Portland Cement Association Skokie, IL, USA, 1996.
    [40] A. A. Ramezanianpour, E. Ghiasvand, I. Nickseresht, M. Mahdikhani, and F. Moodi, "Influence of various amounts of limestone powder on performance of Portland limestone cement concretes," Cement and Concrete Composites, vol. 31, no. 10, pp. 715-720, 2009, doi: 10.1016/j.cemconcomp.2009.08.003.
    [41] A. M. Salman, M. A. Akinpelu, I. T. Yahaya, and H. M. Salami, "Workability and strengths of ternary cementitious concrete incorporating calcined clay and limestone powder," Materials Today: Proceedings, vol. 86, pp. 51-58, 2023/01/01/ 2023, doi: https://doi.org/10.1016/j.matpr.2023.02.249.
    [42] R. K. Dhir, M. C. Limbachiya, M. J. McCarthy, and A. Chaipanich, "Evaluation of Portland limestone cements for use in concrete construction," Materials and Structures, vol. 40, no. 5, pp. 459-473, 2007, doi: 10.1617/s11527-006-9143-7.
    [43] Y. Wu, P. Tang, H. Lv, W. Wei, S. Zhou, and K. Liu, "Degradation of the bond performance between composite limestone powder concrete and steel bars under a sulfate freeze–thaw environment," Construction and Building Materials, vol. 369, p. 130515, 2023/03/10/ 2023, doi: https://doi.org/10.1016/j.conbuildmat.2023.130515.
    [44] Z. Huang et al., "Shear design and life cycle assessment of novel limestone calcined clay cement reinforced concrete beams," Structural Concrete, vol. 24, no. 4, pp. 5063-5085, 2023.
    [45] 國家地震工程研究中心、財團法人中興工程顧問社,《臺灣結構耐震評估與補強技術手冊(TEASPA V5.0)》,2025。
    [46] A. S. 41-13, Seismic Evaluation and Retrofit of Existing Buildings. Reston, Virginia: American Socciety of Civil Engineers(ASCE).
    [47] 宋裕祺、蔡益超,《鋼筋混凝土建築物耐震能力詳細評估SERCB:理論背景與系統操作》,中國土木水利工程學會,2023。
    [48] 林建宏、宋裕祺、蔡益超、賴明俊、林冠禎、鄒本駒,「鋼筋混凝土建築物耐震能力評估平台SERCB補強模組之開發與建築物評估補強案例編撰」,2012。
    [49] 李台光、陳正誠,「繫筋配置對於鋼筋混凝土梁耐震性能影響之實驗研究」,結構工程,2023,第38卷,第2期,39–64頁。
    [50] 吳建華,「卜特蘭石灰石水泥(PLC)低碳混凝土柱耐震性能研究」,碩士論文,土木工程學系,國立成功大學,台南市,2024。
    [51] 《建築物混凝土結構設計規範》,內政部國土管理署,2024。
    [52] CNS 1232「混凝土圓柱試體抗壓強度檢驗法」,中華民國國家標準,2002。
    [53] Federal Emergency Management Agency, Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary, AC 374, Washington, DC, USA: FEMA on Structural Testing and Commentary, A. C. 374.
    [54] CNS 3090「預拌混凝土」,中華民國國家標準。
    [55] 李銘智,「別讓混凝土發燒或受寒」,營建知訊,2022,第472期,34–50頁。
    [56] 《施工綱要規範第03050章 混凝土基本材料及施工一般要求》,內政部國土署,2018。
    [57] CNS 560 A2006「鋼筋混凝土用鋼筋」,中華民國國家標準。
    [58] J. P. Moehle, Seismic design of reinforced concrete buildings. McGraw-Hill Education New York, 2015.
    [59] F. E. FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings (Federal Emergency Management Agency: Washington, DC, USA). 2000.
    [60] R. Park, "Evaluation of ductility of structures and structural assemblages from laboratory testing," Bulletin of the new Zealand society for earthquake engineering, vol. 22, no. 3, pp. 155-166, 1989.
    [61] T. Heitz, C. Giry, B. Richard, and F. Ragueneau, "Identification of an equivalent viscous damping function depending on engineering demand parameters," Engineering Structures, vol. 188, pp. 637-649, 2019/06/01/ 2019, doi: https://doi.org/10.1016/j.engstruct.2019.03.058.
    [62] 國家地震工程研究中心、財團法人中興工程顧問社,《臺灣結構耐震評估側推分析法TEASPA線上服務網頁使用手冊》,2023。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE