簡易檢索 / 詳目顯示

研究生: 簡民淑
Chien, Min-Shu
論文名稱: 離岸風機結構中泥漿接合部分之應力分析
Stress Analysis of Grouted Connections in Offshore Wind Turbine Structures
指導教授: 林育芸
Lin, Yu-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 76
中文關鍵詞: 離岸風機有限元素泥漿接合黏著元素
外文關鍵詞: Offshore wind turbine, Finite element, Grouted connection, Cohesive elements
相關次數: 點閱:119下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今全球面臨能源短缺的問題,在海上發展能源已成為主流,離岸風機以支承結構形式不同而有所差別,相通點是都需要透過泥漿材料做接合。此外,在海上的離岸風機會受到來自風力及海浪力等作用,長期受到這些外力作用之下,會使得風機的泥漿接合部分產生破壞。本研究將利用有限元素軟體ABAQUS模擬離岸風機之支承結構,其泥漿接合部分將使用黏著元素取代接合材料,在不同載重型式(垂直載重、靜態與動態的水平載重)下探討接合部分之的應力分布以及變形行為,最後預測離岸風機的接合部分破壞趨勢。

    Offshore wind turbine structure suffer from different types of loadings, such as wind and wave loads. The objective of this research is to analyze the stress fields of the grouted connection in the structure and predict the possible damage due to external forces. We used the finite element software ABAQUS to simulate the problem, and cohesive elements to describe the behavior of grout material. Stresses in the grouted connection due to different loading were shown. The results indicate the possibility of damage is dominated by shear. There also exists normal stress (opening) near the edges of the grouted connection when a horizontal load is acting. The damage zone may develop in the long term but further investigations and studies will be needed.

    摘要 I Abstract II 致謝 XII 目錄 XIII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 本文內容與組織 1 第二章 文獻回顧 3 第三章 接合元件 10 3.1 接合元件概述 10 3.2 接合材料 10 3.3 載重效應 12 3.4 接合元件設計尺寸 12 3.5 黏著元素(Cohesive Element)介紹 13 第四章 數值分析 20 4.1 二維黏著元素之張力及剪力測試 20 4.2 單樁支承結構模型 24 4.3 單樁支承受垂直載重的影響 25 4.4 單樁支承受水平載重的影響 26 4.5 單樁支承受垂直與靜態水平載重的影響 28 4.6 單樁支承承受垂直與動態水平載重的影響 29 第五章 結論 54 參考文獻 56

    [1]經濟部能源局(2011),「能源報導-能源政策」,第九期,取自
    http://energymonthly.tier.org.tw/outdatecontent.asp?ReportIssue=201109&Page=26

    [2]黃振愷(2014),「未來台灣風力發電產業之發展方向及前景」,中華技術期刊,第103卷,第三期,頁16-24。

    [3]Wijngaarden, M. V. (2013), “ Concept Design of Steel Bottom Founded Support Structures for Offshore Wind Turbines. ”, Bachelor Thesis, pp. 1~10.

    [4]廖學瑞、丁金彪、林俶寬、劉育明(2014),「離岸風機基礎設計技術初探」,中華技術期刊,第103卷,第三期,頁86-89。

    [5]廖偉宏(2013),「離岸風機單柱支承基礎結構於靜態側向作用力下之變型與應力分析」,成功大學水利及海洋工程研究所碩士論文。

    [6]Lotsberg, I., Serennicki,A., Bertnes, H., and Lervik, A. (2012), “ Design of Grouted Connections for monopole Offshore Strictures Results from Two Joint Industry Projects. ”, Stahlbau, Vol.81, No.9, pp.695~704.

    [7]Dedic ́.N (2009), “ Analysis of Grouted Connections in Monopile Wind Turbine Foundations Subjected to Horizontal Load Transfer. ”, Master Thesis, Aalborg University, Denmark.

    [8]Schaumann, P.; Kleineidam, P. and Wike, F. (2004), “ Nonlinear Structural Dynamics of Offshore Wind Energy Converters with Grouted Transition Piece. ”, Stahlbau, Vol.73, No.9, pp.716~726.
    [9]Y., Petryna, M., Link and A., Ku ̈nzel (2004), “ Modeling and Monitoring of Damage in Grouted Joints. ”, European Workshop on Structure Health Monitoring, No.6, Technische Universita ̈t Berlin and Kassel Universita ̈t.

    [10]Det Norske Veritas. (2013), “ Design of Offshore Wind Turbine Structures.” DNV. DNV-OS-J101.

    [11]Densit. (2013), “ Ultra-High Performance Cementitious. ”

    [12]Abaqus 6.14 Analysis Users’s Manual.

    [13]Guo Guodong and Zhu Yong (2015), “ Cohesive-Shear-Lag Modeling of Interfacial Stress Transfer Between a Monolayer Graphene and a Polymer Substrate. ”, Journal of Applied Mechanics, Vol.82, No.031005, pp.1~7.

    [14]Cox, H. L., 1952, “ The Elasticity and Strength of Paper and Other Fibrous Materials. ”, Br. J. Appl. Phys., 3(3), pp.72~79.

    下載圖示 校內:2020-11-12公開
    校外:2020-11-12公開
    QR CODE