簡易檢索 / 詳目顯示

研究生: 歐陽毅翔
OuYang, Yi-Shiang
論文名稱: 應用於大鼠行為研究之虛擬實境系統開發
Development of Virtual Reality Environment for Behavioral Study of Rats
指導教授: 陳家進
Chen, Jia-Jin
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 38
中文關鍵詞: 動物行為研究沈浸式虛擬實境
外文關鍵詞: Immersive Virtual Reality, Animal Behavioral Study
相關次數: 點閱:54下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於資訊科技的發展,促使虛擬實境技術得以應用於手術過程的模擬、復健治療訓練及認知神經科學的研究上。然而,現有動物行為研究的設備,包括各式迷宮系統及獎勵裝置,由於體積龐大,系統結構較不精細及欠缺可塑性等,尤其很難在動物實驗的過程中獲得較多可定量的動態或神經電訊號的紀錄。部分的研究中已証實可以藉由獎勵裝置以及虛擬場景之視覺提示的方式來研究動物的行為,包括注意歷程、空間記憶、執行功能等之。
    本研究開發一個具有沈浸式虛擬實境的動物試驗記錄箱。在此,容許我們於一個局限的環境中,對於動物的刺激反應及互動進行觀察及測量。我們整合半球虛擬實境投影設備來顯示虛擬景象,同時設計動作偵測子系統來感應動物之自主意識動作狀態,能夠獲得偵測。在我們自行設計的動物實驗箱中,允許半球形螢幕一維pitch轉動以確保在實驗中動物位於視覺最佳位置。藉由動物的行為動作擷取系統所偵測之訊號如上下及左右移動,讓實驗動物與虛擬實境影像作互動,並透過TCP/IP的網路傳輸方式,來傳遞這些互動訊號。實驗中的動物行為可利用背後的攝影機來進行監控,且進行影像與偵測訊號的同步。在動物行為與視覺互動的基礎下,所發展的虛擬實境系統能夠被執行在動物行為研究的驗證測試。

    Recent developments in information technology have facilitated the use of virtual reality (VR) techniques for simulation surgery, rehabilitation training, and cognitive neuroscience studies. However, current animal behavior facilities, including various kinds of maze and awarding devices are rather bulky, primitive design, and lack of flexibilities which are extremely difficult to record the neural activities during their animal experiment. Several VR studies have demonstrated its feasibility for animals to interact with VR by using rewarding scheme and visual cues for attention processes, spatial memory, and executive functions. This study aimed to develop an animal behavior testing environment with immersive VR which allowed us to interact with the animal responses to the stimulations in a limited space. We integrated the dome screen for displaying visual stimuli and a motion detection subsystem for sensing the animal’s intention. In our self-design animal cage, the front hemisphere screen connected the outer cage in one-degree-of-freedom for pitch rotating to ensure the animal was constrained at optimal view point during the experiment. The intentions of animal were detected by body position sensing device, which sent rotation and yaw angles via TCP/IP transmission to alter VR generation. A camera was mounted behind and slightly above the animal which allowed experimenter to observe the locomotion of rat and to synchronize the recording of brain activity. Validation tests of animal behaviors on the developed VR system were performed based on the visual interaction to the animal behavioral studies.

    中文摘要 I Abstract II 致謝 III Contents IV List of Figures VI List of Tables VIII Chapter 1 Introduction 1 1.1 Introduction to immersive virtual reality (VR) 1 1.2 Conventional approaches for studies of animal behavior 2 1.3 Applications of VR for animal behavioral studies 3 1.4 Motivation and the aims of this study 5 Chapter 2 Material and Methods 7 2.1 Overall architecture of integrated VR system 7 2.2 Immersive VR system for animal study 8 2.2.1 Generation of immersive VR scene 8 2.3 Treadmill system with body position sensing 10 2.3.1 Specifications of the animal treadmill system 10 2.3.2 Body position sensing 11 2.4 Transmission between immersive VR and body position sensing 14 2.5 Establishment of animal VR cage for behavior study 15 2.6 Synchronization of sensing data and capturing images 17 2.7 Experimental setup for validation tests 18 Chapter 3 Results 19 3.1 The integrated VR system for animal behavioral study 19 3.1.1 The dome screen for displaying VR environments 19 3.1.2 Weight and angle measurement for sensor with analog amplifier 20 3.1.3 Graphical user interface for data recording and transmission 22 3.1.4 Monitoring animal behavior 23 3.2 Example of animal position sensing data 23 3.3 Validation and performance integrated VR system 28 Chapter 4 Discussion and Conclusion  32 Reference  34

    [1] http://www-vrl.umich.edu/intro/
    [2] http://www.avrrc.lboro.ac.uk/Visiondome_facility.html#
    [3] J. E. Dowding and E. C., Murphy, “Ecology of ship rats (Rattus rattus) in a Kauri (Agathis australis) forest in Northland,” New Zealand. NZ J. Ecol. 18, 19-28, 1994.
    [4] D. J. Hartley and J. A. Bishop, “Home range and movement in populations of Rattus norvegicus polymorphic for warfarin resistance,” Biol. J. Linn. Soc. 12, 19-43, 1979.
    [5] K. J. Jeffery, “Learning of landmark stability and instability by hippocampal place cells,” Neuropharmacol. 37, 677-687, 1998.
    [6] E. Gaffan and M. Eacott, “Spatial memory impairment in rats with fornix transection is not accompanied by a simple encoding deficit for directions of objects in visual space,” Behav. Neurosci. 111, 937-954, 1997.
    [7] D. Gaffan, “Idiothetic input into object-place configuration as the contribution to memory of the monkey and human hippocampus: a review,” Exp. Brain Res. 123, 201-209, 1998.
    [8] C. Hölscher, “Time, space, and hippocampal functions,” Rev. Neurosci. 14, 253-284, 2003.
    [9] R. A. Robb, B.M. Cameron, and S. Aharon, “Efficient shape-based algorithms for modeling patient specific anatomy from 3D medical images: applications in virtual endoscopy and surgery, Shape Modeling and Applications,” Proceedings of Shape Modeling and Applications, pp. 97-108, Aizu-Wakamatsu, Japan, March 3-6, 1997.
    [10] B. Barnes, A. S. Menon, R. Mills, C. D. Bruyns, A. Twombly, J. Smith, K. Montgomery, and R. Boyle, “Virtual reality extensions into surgical training and teleportation Information Technology Applications in Biomedicine,” 2003. 4th International IEEE EMBS Special Topic Conference on 24-26 April 2003 Page(s):142 – 145.
    [11] N. G. Kim, C. K. Yoo, and J. J. Im, “A New Rehabilitation Training System for Postural Balance Control Using Virtual Reality Technology,” IEEE Transactions on Rehabilitation Engineering, 7, No. 4, 482-485, 1999.
    [12] C. G. Song, J. Y. Kim, and N. G. Kim, “A New Postural Balance Control System for Rehabilitation Training Based on Virtual Cycling, IEEE Transactions on Information Technology in Biomedicine, 8, No. 2, 200-207, 2004.
    [13] N. Burgess, E. A. Maguire, and J. O'Keefe, “The human hippocampus and spatial and episodic memory,” Neuron. 35, 625-41, 2002.
    [14] J. P. Wann, S. K. Rushton, M. Smyth, and D. Jones, “Virtual environments for the rehabilitation of disorders of attention and movement. In G. Riva, (Ed.), Virtual Reality in Neuropsycho-physiology: Cognitive, Clinical, and Methodological Issues in Assessment and Rehabilitation Amsterdam: IOS Press, 157-164, 1997.
    [15] R. S. Astur, L. M. Ortiz, and R. J. Sutherland, “A characterization of performance by men and women in a virtual Morris water task: A large and reliable sex difference,” Behavioural Brain Research, 93, 185-90, 1998.
    [16] J. McComas, J. Pivik, and M. Laflamme, “Childrenís transfer of spatial learning from virtual reality to real environments,” CyberPsychology and Behavior, 1(2), 121-128, 1998.
    [17] D. A. Johnson, F. D. Rose, S. K. Rushton, B. Pentland, and E. A. Attree,” Virtual reality: A new prosthesis for brain injury rehabilitation,” Scottish Medical Journal, 43, 81-83, 1998.
    [18] L. Pugnetti, L. Mendozzi, E. A. Attree, E. Barbieri, B. M. Brooks, C. L. Cazzullo, A. Motta, and F. D. Rose, “Probing memory and executive functions with virtual reality: Past and present studies,” CyberPsychology and Behavior, 1(2), 151-162, 1998.
    [19] N. Sato, H. Sakata, Y. Tanaka, and M. Taira, “Navigation in virtual environment by the macaque monkey,” Behavioural Brain Research, 153, 287–291, 2004.
    [20] J. R. Gray, V. Pawlowski and M. A. Willis, “A method for recording behavior and multineuronal CNS activity from tethered insects flying in virtual space,” Journal of Neuroscience Methods, 120, 211-223, 2002.
    [21] C. Hölscher, A. Schnee, H. Dahmen, L. Setia, and H. A. Mallot, “Rats are able to navigate in virtual environments,” The Journal of Experimental Biology, 208, 561-569, 2005.
    [22] A. D. Ekstrom, M. J. Kahana, J. B. Caplan, T. A. Fields, E. A. Isham, E. L. Newman, and I. Fried, “Cellar networks underlying human spatial navigation,” Nature, 425, 184-187, 2003.
    [23] A. C. Harmon, T. O. Moore, K. L. Huhman, and H. E. Albers, “Social experience and social context alter the behavioral response to centrally administered oxytocin in female syrian hamsters,” Neuroscience, 109, 767-772, 2002.
    [24] M. E. Hasselmo, J. Hay, M. Ilyn, and A. Gorchetchnikov, “Neuromodulation, theata rhythm and rat spatial navigation,” Neural. Netw. 15, 689-707, 2002.
    [25] R. A. Koene, A. Gorchetchnikov, R. C. Cannon, and M. E. Hasselmo, “Modeling goal-directed spatial navigation in the rat based on physiological data from the hippocampal formation,” Neural. Netw. 16, 577-584, 2003.
    [26] N. Yirmiya, T. Pilowsky, D. Solomonica-Levi, and C. Shulman, “Brief report: gaze behavior and theory of mind abilities in individuals with autism, Down syndrome, and mental retardation of unknown etiology,” J. Autism Dev. Disord. 29, 333-341, 1999.
    [27] B. E. Hetzler and L. K. Krekow, “Temperature Dependence and Independence of Effects of Pentobarbital on Visual Evoked Potentials of Rats,” Neurotoxicology and Teratology, 21, No.2, 181-191, 1999.
    [28] W. K. Boyes and R. S. Dyer, “Pattern Reversal Visual Evoked Potentials in Awake Rats,” Brain Research Bulletin, 10, 817-823, 1983.

    下載圖示 校內:2008-07-20公開
    校外:2008-07-20公開
    QR CODE