簡易檢索 / 詳目顯示

研究生: 嚴焌榮
Yen, Chun-Jung
論文名稱: 利用光學成像及膠合有限元素建模探討停頓與回退於針穿刺過程對目標組織位移精準度之影響
Investigating Tissue Targeting Accuracy in Needle Insertion with Pause and Pullback by Optical Imaging and Cohesive Based Finite Element Modeling
指導教授: 林啟倫
Lin, Chi-Lun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 針穿刺膠合性界面組織變形數位影像相關法
外文關鍵詞: needle insertion, cohesive surface, tissue displacement, digital image correlation
相關次數: 點閱:84下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針穿刺是一個主流的醫療行為,而定位的精準度會影響手術的成功率,透過過去的文獻可以發現針插入組織時會導致組織變形,從而影響針的定位精度,但過去研究大部分皆著重在切削力與定位精準度的關聯或切削參數、針頭設計與切削力的關係,並沒有很直接的觀察組織變形;而穿刺過程的切削參數中,停頓與回退尚未有人研究其對組織位移的表現。
    本研究將專注於利用切削過程參數的差異減少組織變形。配置仿生的軟組織假體,利用文獻數據與模擬驗證其真實性;實驗則建立重現醫療切削過程的機台,利用DIC光學與影像學追蹤目標的位移;再利用ABAQUS動態處理的膠合介面技巧模擬切削過程中的組織位移。利用實驗及模擬的技巧探討切削過程中停頓與回退對軟組織位移的影響,致力使其最小化。
    本研究主要發現為:
    1 穿刺過程中針停頓對有效降低17%~26%的組織內部變形。
    2 穿刺過程中針回退會提高對組織內部變形21%~24%的影響。
    3 歸納出穿刺過程中較好的切削參數為:「回退距離短」、「停頓點提前」、「第二次停頓時間長」,使得組織有較低程度的變形。在x、y方向上分別降低了11.6%與26.8%。

    Pause and pullback are seldom applied in needle insertion, but limited studies have shown its positive impact. From the view of enhancing accuracy, it is important to elucidate how to decrease the displacement responses in a large design space of needle pause and pullback.
    A two-dimensional dynamic finite element model is combined with the Taguchi method of experimental design. Cohesive elements were arranged in the finite element model to simulate realistic tissue damage during needle insertion. The model is verified by the optical insertion experiment, which allow to observe the interaction of tissue and needle at axial section through the non-contact method (Digital Image Correlation). Design optimization based on the Taguchi method with simulation model is carried out to find the optimal cutting parameters of the insertion design with pause and pullback. The effects of the cutting parameters to the targeting tissue displacement and the interactions between the parameters are investigated. The goal is to provide a guidance for selecting the needle cutting parameters in various conditions.
    In experimental results, it was found that both needle pause and pullback have a significant impact on tissue displacement. When performing needle insertion with pause, results show that tissue displacement can effectively be reduced by a range from 17% to 26%; while with pullback, it increases tissue displacement by a range from 21% to 24%. In simulation result, the main effect plot shown that factors pullback distance, pause distance, and second pause period, which was lack of investigation, can affect the tissue displacement

    摘要 I EXTENDED ABSTRACT II 表目錄 XVIII 圖目錄 XIX 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 4 1.2.1 臨床文獻 4 1.2.2 仿軟組織假體特性 4 1.2.3 切削力與反力 5 1.2.4 針頭設計 7 1.2.5 切削參數設計 7 1.2.6 利用影像處理觀察組織變形 9 1.2.7 利用電腦數值模型觀察組織變形 10 1.2.8 田口品質設計 12 1.3 研究目的 14 第二章 實驗方法 15 2.1 本章介紹 15 2.2 實驗儀器 15 2.3 軟組織製作流程 17 2.4 壓痕試驗 18 2.5 驗證實驗 19 2.6 切削實驗全因子與田口品質設計 19 2.6.1 兩階段水準設計及直交表 20 2.6.2 信號雜音比 25 2.6.3 變異數分析 26 2.7 使用DIC觀測破壞 31 2.7.1 雷射顯影 31 2.7.2 數位影像處理 31 2.7.3 數位影像之相關性 32 2.7.4 數值方法 33 2.8 膠合性界面模擬模型 36 2.8.1 破壞韌性量測 36 2.8.2 內聚力模型 39 2.8.3 牽引力-張開量準則 40 2.8.4 混合破壞 42 2.8.5 有限元素模型之建立 43 第三章 結果與討論 47 3.1 壓痕試驗實驗與模擬 47 3.2 光學驗證實驗 47 3.3 切削實驗及有限元驗證 50 3.3.1 軸向切削實驗x方向ANOVA分析 52 3.3.2 軸向切削實驗y方向ANOVA分析 53 3.3.3 有限元素切削模型驗證 54 3.4 田口品質方法模擬 56 3.4.1 軸向截面y方向田口分析 57 3.4.2 軸向截面x方向田口分析 59 3.4.3 田口綜合分析討論 61 3.4.4 田口模擬模型趨勢討論 61 3.5 參數最佳推定計算 66 3.6 交互作用分析 67 第四章 結論與未來方向 72 參考文獻 74 表 1 乳房切除方式之比較 3 表 2 吉利丁濃度與楊氏模數對應表 5 表 3 全因子實驗因子設計與水準配置表 20 表 4 L18(2x37)直交表 24 表 5 實驗因子與水準配置表 25 表 6 變異數 (ANOVA)分析表 30 表 7 模型材料參數 47 表 8 x方向位移實驗ANOVA 53 表 9 y方向位移實驗ANOVA 54 表 10 破壞韌性配置 54 表 11 模型驗證誤差 55 表 12 模擬直交表因子配置及SNR 56 表 13 y方向之水準輔助表 58 表 14 y方向田口分析 59 表 15 x方向之水準輔助表 60 表 16 x方向田口分析 61 表 17 交互作用示意表 67 表 18 交互作用示意表(續) 68 圖 1乳房構造(資料來源:乳癌防治基金會) 2 圖 2 針插入過程中的組織變形 9 圖 3 切削中停頓與反力關係圖 9 圖 4 軟組織切削平台 16 圖 5 切削針頭(局部圖)與軟組織 16 圖 6雷射裝置與光學透鏡 17 圖 7 Xiema高速攝影機 17 圖 8全因子針穿刺實驗設置 21 圖9 光柵示意圖 31 圖 10 軟組織軸向截面之原始圖檔與分析範圍 32 圖 11 FA-GN演算法 35 圖 12 IC-GN演算法 35 圖 13 針頭完整穿刺組織之反力 37 圖 14 實心針頭刺穿組織之裂紋 38 圖 15 轉換前之h函數曲線 39 圖 16 針尖端切開材料圖 40 圖 17 牽引力-張開量法則 40 圖 18 (左)模式一張開式破壞(中)模式二滑動式破壞(右)模式三撕裂式破壞 41 圖 19 針頭網格設置 45 圖 20 組織網格設置 45 圖 21 模型剖面與膠合介面 46 圖 22壓痕之模擬與實驗反力圖 47 圖 23 二維元素壓痕模擬 x方向 48 圖 24 二維元素壓痕模擬 y方向 48 圖 25 壓痕驗證實驗影像 x方向 49 圖 26 壓痕驗證實驗影像 y方向 49 圖 27 實驗組織位移雲圖 50 圖 28 x方向位移實驗結果 51 圖 29 x方向位移實驗結果 51 圖 30 y方向位移實驗結果 52 圖 31 y方向位移實驗結果 52 圖 32 模擬位移雲圖 55 圖 33 模擬實驗組織區域位移對照圖(mm) 55 圖 34 y方向之主效應圖 58 圖 35 x方向之主效應圖 60 圖 36 第17組田口模擬位移雲圖(A)穿刺初始時(B)穿刺終點時 62 圖 37 田口模擬y方向位移雲圖(A)第14組(B)第17組 63 圖 38 田口模擬x方向位移雲圖(A)第14組(B)第17組 64 圖 39 不同切削參數反力結果疊圖(虛線框:第一次停頓;實線框:第二次停頓) 65 圖 40 Oldfield 的針插入反力結果 65 圖 41 回退速度與回退距離交互作用影響圖 68 圖 42 回退速度與停頓點交互作用影響圖 69 圖 43 回退速度與第一次停頓時間交互作用影響圖 69 圖 44 回退速度與第二次停頓時間交互作用影響圖 69 圖 45 回退距離與停頓點交互作用影響圖 70 圖 46 回退距離與第一次停頓時間交互作用影響圖 70 圖 47 回退距離與第二次停頓時間交互作用影響圖 70 圖 48 停頓點與第一次停頓時間交互作用影響圖 71 圖 49 停頓點與第二次停頓時間交互作用影響圖 71 圖 50 第一次與第二次停頓時間交互作用影響圖 71

    [1] O. A. Shergold and N. A. Fleck, "Mechanisms of deep penetration of soft solids, with application to the injection and wounding of skin," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 460, no. 2050, pp. 3037-3058, 2004.
    [2] M. Oldfield, D. Dini, G. Giordano, and F. Rodriguez y Baena, "Detailed finite element modelling of deep needle insertions into a soft tissue phantom using a cohesive approach," Computer methods in biomechanics and biomedical engineering, vol. 16, no. 5, pp. 530-543, 2013.
    [3] N. Abolhassani, R. Patel, and M. Moallem, "Needle insertion into soft tissue: A survey," Medical engineering & physics, vol. 29, no. 4, pp. 413-431, 2007.
    [4] S. P. DiMaio and S. E. Salcudean, "Needle insertion modeling and simulation," IEEE Transactions on robotics and automation, vol. 19, no. 5, pp. 864-875, 2003.
    [5] T. Podder, D. Clark, J. Sherman, D. Fuller, E. Messing, D. Rubens, J. Strang, Y. Zhang, W. O’Dell, and W. Ng, "Effects of tip geometry of surgical needles: an assessment of force and deflection," in IFMBE Proc, 2005, vol. 11, no. 1, pp. 1727-1983, 2005.
    [6] E. Hauth, H. Jaeger, J. Lubnau, S. Maderwald, F. Otterbach, R. Kimmig, and M. Forsting, "MR-guided vacuum-assisted breast biopsy with a handheld biopsy system: clinical experience and results in postinterventional MR mammography after 24 h," European radiology, vol. 18, no. 1, pp. 168-176, 2008.
    [7] S. Nath, Z. Chen, N. Yue, S. Trumpore, and R. Peschel, "Dosimetric effects of needle divergence in prostate seed implant using 125I and 103Pd radioactive seeds," Medical physics, vol. 27, no. 5, pp. 1058-1066, 2000.
    [8] L. Hoorntje, M. Schipper, A. Kaya, H. Verkooijen, J. Klinkenbijl, and I. B. Rinkes, "Tumour cell displacement after 14G breast biopsy," European Journal of Surgical Oncology (EJSO), vol. 30, no. 5, pp. 520-525, 2004.
    [9] C. Salem, R. Sakr, J. Chopier, C. Marsault, S. Uzan, and E. Daraï, "Accuracy of stereotactic vacuum-assisted breast biopsy with a 10-gauge hand-held system," The Breast, vol. 18, no. 3, pp. 178-182, 2009.
    [10] M. E. Abdelaziz, V. Groenhuis, J. Veltman, F. Siepel, and S. Stramigioli, "Controlling the Stormram 2: An MRI-compatible robotic system for breast biopsy," in Robotics and Automation (ICRA), 2017 IEEE International Conference on, 2017, pp. 1746-1753, 2017.
    [11] N. G. Ramião, P. S. Martins, R. Rynkevic, A. A. Fernandes, M. Barroso, and D. C. Santos, "Biomechanical properties of breast tissue, a state-of-the-art review," Biomechanics and modeling in mechanobiology, vol. 15, no. 5, pp. 1307-1323, 2016.
    [12] A. Forte, F. D'Amico, M. Charalambides, D. Dini, and J. Williams, "Modelling and experimental characterisation of the rate dependent fracture properties of gelatine gels," Food Hydrocolloids, vol. 46, pp. 180-190, 2015.
    [13] K. A. Iczkowski, G. Casella, R. J. Seppala, G. L. Jones, B. A. Mishler, J. Qian, and D. G. Bostwick, "Needle core length in sextant biopsy influences prostate cancer detection rate," Urology, vol. 59, no. 5, pp. 698-703, 2002.
    [14] K. Fink, G. Hutarew, A. Pytel, and N. Schmeller, "Prostate biopsy outcome using 29 mm cutting length," Urologia internationalis, vol. 75, no. 3, pp. 209-212, 2005.
    [15] M. Heverly, P. Dupont, and J. Triedman, "Trajectory optimization for dynamic needle insertion," in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, 2005, pp. 1646-1651, 2005.
    [16] M. Meltsner, N. Ferrier, and B. Thomadsen, "Observations on rotating needle insertions using a brachytherapy robot," Physics in medicine and biology, vol. 52, no. 19, p. 6027, 2007.
    [17] R. Alterovitz, K. Goldberg, J. Pouliot, R. Taschereau, and I.-C. Hsu, "Needle insertion and radioactive seed implantation in human tissues: Simulation and sensitivity analysis," in Robotics and Automation, 2003. Proceedings. ICRA'03. IEEE International Conference on, 2003, vol. 2, pp. 1793-1799, 2003.
    [18] R. Alterovitz, K. Y. Goldberg, J. Pouliot, and I.-C. Hsu, "Sensorless motion planning for medical needle insertion in deformable tissues," IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 2, pp. 217-225, 2009.
    [19] J. Z. Moore, P. W. McLaughlin, and A. J. Shih, "Novel needle cutting edge geometry for end‐cut biopsy," Medical physics, vol. 39, no. 1, pp. 99-108, 2012.
    [20] R. Taschereau, J. Pouliot, J. Roy, and D. Tremblay, "Seed misplacement and stabilizing needles in transperineal permanent prostate implants," Radiotherapy and Oncology, vol. 55, no. 1, pp. 59-63, 2000.
    [21] H. Kataoka, T. Washio, K. Chinzei, K. Mizuhara, C. Simone, and A. M. Okamura, "Measurement of the tip and friction force acting on a needle during penetration," in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2002, pp. 216-223, 2002.
    [22] C. Simone and A. M. Okamura, "Modeling of needle insertion forces for robot-assisted percutaneous therapy," in Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on, 2002, vol. 2, pp. 2085-2091, 2002.
    [23] A. M. Okamura, C. Simone, and M. D. O'leary, "Force modeling for needle insertion into soft tissue," IEEE transactions on biomedical engineering, vol. 51, no. 10, pp. 1707-1716, 2004.

    [24] P. Blumenfeld, N. Hata, S. DiMaio, K. Zou, S. Haker, G. Fichtinger, and C. Tempany, "Transperineal prostate biopsy under magnetic resonance image guidance: a needle placement accuracy study," Journal of Magnetic Resonance Imaging, vol. 26, no. 3, pp. 688-694, 2007.
    [25] G. Wan, Z. Wei, L. Gardi, D. B. Downey, and A. Fenster, "Brachytherapy needle deflection evaluation and correction," Medical physics, vol. 32, no. 4, pp. 902-909, 2005.
    [26] S. Jiang, P. Li, Y. Yu, J. Liu, and Z. Yang, "Experimental study of needle–tissue interaction forces: effect of needle geometries, insertion methods and tissue characteristics," Journal of biomechanics, vol. 47, no. 13, pp. 3344-3353, 2014.
    [27] R. Tsumura and H. Iwata, "Trajectory Planning for Abdominal Fine Needle Insertion Based on Insertion Angles," IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1226-1231, 2017.
    [28] T. Podder, D. Clark, D. Fuller, J. Sherman, W. S. Ng, L. Liao, D. Rubens, J. Strang, E. Messing, and Y. Zhang, "Effects of velocity modulation during surgical needle insertion," in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, 2005, pp. 5766-5770, 2005.
    [29] M. Mahvash and P. E. Dupont, "Fast needle insertion to minimize tissue deformation and damage," in Robotics and Automation, 2009. ICRA'09. IEEE International Conference on, 2009, pp. 3097-3102, 2009.
    [30] N. Abolhassani, R. Patel, and M. Moallem, "Control of soft tissue deformation during robotic needle insertion," Minimally invasive therapy & allied technologies, vol. 15, no. 3, pp. 165-176, 2006.
    [31] P. Han and K. Ehmann, "Study of the effect of cannula rotation on tissue cutting for needle biopsy," Medical engineering & physics, vol. 35, no. 11, pp. 1584-1590, 2013.
    [32] Z. Matin Ghahfarokhi, M. Salmani Tehrani, M. Moghimi Zand, and M. Mahzoon, "A Computational study on the effect of different design parameters on the accuracy of biopsy procedure," Journal of Computational Applied Mechanics, vol. 46, no. 2, pp. 221-231, 2015.
    [33] F. Casanova, P. R. Carney, and M. Sarntinoranont, "Effect of needle insertion speed on tissue injury, stress, and backflow distribution for convection-enhanced delivery in the rat brain," PLoS One, vol. 9, no. 4, p. e94919, 2014.
    [34] M. J. Oldfield, A. Leibinger, T. E. T. Seah, and F. R. y Baena, "Method to reduce target motion through needle–tissue interactions," Annals of biomedical engineering, vol. 43, no. 11, pp. 2794-2803, 2015.

    [35] A. Leibinger, M. J. Oldfield, and F. R. y Baena, "Minimally disruptive needle insertion: a biologically inspired solution," Interface focus, vol. 6, no. 3, p. 20150107, 2016.
    [36] M. J. Oldfield, C. Burrows, J. Kerl, L. Frasson, T. Parittotokkaporn, F. Beyrau, and F. Rodriguez y Baena, "Highly resolved strain imaging during needle insertion: Results with a novel biologically inspired device," J Mech Behav Biomed Mater, vol. 30, pp. 50-60, 2014.
    [37] P. L. Roberson, V. Narayana, D. L. McShan, R. J. Winfield, and P. W. McLaughlin, "Source placement error for permanent implant of the prostate," Medical physics, vol. 24, no. 2, pp. 251-257, 1997.
    [38] S. P. DiMaio and S. E. Salcudean, "Needle steering and motion planning in soft tissues," IEEE Transactions on Biomedical Engineering, vol. 52, no. 6, pp. 965-974, 2005.
    [39] J. Kerl, T. Parittotokkaporn, L. Frasson, M. Oldfield, F. R. y Baena, and F. Beyrau, "Tissue deformation analysis using a laser based digital image correlation technique," J Mech Behav Biomed Mater, vol. 6, pp. 159-65, 2012.
    [40] B. Takabi and B. L. Tai, "A review of cutting mechanics and modeling techniques for biological materials," Medical Engineering & Physics, 2017.
    [41] X. Nan, L. Xie, and W. Zhao, "On the application of 3D finite element modeling for small-diameter hole drilling of AISI 1045 steel," The International Journal of Advanced Manufacturing Technology, vol. 84, no. 9, pp. 1927-1939, 2016.
    [42] X. Q. Kong and C. W. Wu, "Measurement and Prediction of Insertion Force for the Mosquito Fascicle Penetrating into Human Skin," Journal of Bionic Engineering, vol. 6, no. 2, pp. 143-152, 2009.
    [43] X. Q. Kong, P. Zhou, and C. W. Wu, "Numerical simulation of microneedles' insertion into skin," Computer Methods in Biomechanics and Biomedical Engineering, vol. 14, no. 9, pp. 827-835,2011.
    [44] J. Ling, Z. Song, J. Wang, K. Chen, J. Li, S. Xu, L. Ren, Z. Chen, D. Jin, and L. Jiang, "Effect of honeybee stinger and its microstructured barbs on insertion and pull force," Journal of the Mechanical Behavior of Biomedical Materials, vol. 68, no. Supplement C, pp. 173-179, 2017.
    [45] N. A. Nordendale, W. F. Heard, J. A. Sherburn, and P. K. Basu, "A comparison of finite element analysis to smooth particle hydrodynamics for application to projectile impact on cementitious material," Computational Particle Mechanics, vol. 3, no. 1, pp. 53-68, 2015.
    [46] A. Mir, X. Luo, and A. Siddiq, "Smooth particle hydrodynamics study of surface defect machining for diamond turning of silicon," The International Journal of Advanced Manufacturing Technology, vol. 88, no. 9-12, pp. 2461-2476, 2016.
    [47] B. Takabi and B. L. Tai, "A review of cutting mechanics and modeling techniques for biological materials," Med Eng Phys, vol. 45, pp. 1-14, 2017.
    [48] M. K. Rausch, G. E. Karniadakis, and J. D. Humphrey, "Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach," Biomech Model Mechanobiol, vol. 16, no. 1, pp. 249-261, 2017.
    [49] F. Ducobu, E. Rivière-Lorphèvre, and E. Filippi, "Application of the Coupled Eulerian-Lagrangian (CEL) method to the modeling of orthogonal cutting," European Journal of Mechanics - A/Solids, vol. 59, pp. 58-66, 2016.
    [50] F. Ducobu, E. Rivière-Lorphèvre, and E. Filippi, "Finite element modelling of 3D orthogonal cutting experimental tests with the Coupled Eulerian-Lagrangian (CEL) formulation," Finite Elements in Analysis and Design, vol. 134, pp. 27-40, 2017.
    [51] B. L. Tai, Y. Wang, and A. J. Shih, "Cutting force in hollow needle insertion of soft tissue," in ASME International Manufacturing Science and Engineering Conference, Paper No. MSEC, 2013.
    [52] M. Oldfield, D. Dini, G. Giordano, and Y. B. F. Rodriguez, "Detailed finite element modelling of deep needle insertions into a soft tissue phantom using a cohesive approach," Comput Methods Biomech Biomed Engin, vol. 16, no. 5, pp. 530-43, 2013.
    [53] Q. Hernandez and E. Pena, "Failure properties of vena cava tissue due to deep penetration during filter insertion," Biomech Model Mechanobiol, vol. 15, no. 4, pp. 845-56, 2016.
    [54] W. p. Yang and Y. Tarng, "Design optimization of cutting parameters for turning operations based on the Taguchi method," Journal of materials processing technology, vol. 84, no. 1-3, pp. 122-129, 1998.
    [55] C.-L. Lin, J.-H. Yu, H.-L. Liu, C.-H. Lin, and Y.-S. Lin, "Evaluation of contributions of orthodontic mini-screw design factors based on FE analysis and the Taguchi method," Journal of biomechanics, vol. 43, no. 11, pp. 2174-2181, 2010.
    [56] D. Grieve, D. Barton, D. Crolla, and J. Buckingham, "Design of a lightweight automotive brake disc using finite element and Taguchi techniques," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 212, no. 4, pp. 245-254, 1998.
    [57] P. Han, J. Kim, K. F. Ehmann, and J. Cao, "Laser surface texturing of medical needles for friction control," International Journal of Mechatronics and Manufacturing Systems 1, vol. 6, no. 3, pp. 215-228, 2013.
    [58] M. J. Oldfield, D. Dini, T. Jaiswal, and F. Rodriguez y Baena, "The significance of rate dependency in blade insertions into a gelatin soft tissue phantom," Tribology International, vol. 63, pp. 226-234, 2013.

    [59] T. Azar and V. Hayward, "Estimation of the fracture toughness of soft tissue from needle insertion," Biomedical simulation, pp. 166-175, 2008.
    [60] M. L. Benzeggagh and M. Kenane, "Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus," Composites Science and Technology, vol. 56, no. 4, pp. 439-449, 1996.

    下載圖示 校內:2021-09-30公開
    校外:2021-09-30公開
    QR CODE