簡易檢索 / 詳目顯示

研究生: 黃介繹
Huang, Chieh-Yi
論文名稱: 模擬光注入半導體雷射受自身光回饋系統達到微波時脈除頻
Numerical Simulation of Clock Division Using Optically-Injected Semiconductor Laser with Optical Feedback
指導教授: 黃勝廣
Hwang, Sheng-Kwang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 65
中文關鍵詞: 非線性動態週期二動態光注入系統光回饋系統降低擾動
外文關鍵詞: nonlinear dynamics, period-two, optical injection, optical feedback, jitter lowering
相關次數: 點閱:162下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是利用數值模擬光注入半導體雷射系統,產生之非線性動態行為中的週期二動態,作為OTDM系統中的時脈除頻之應用,再加上光回饋半導體雷射系統,使輸出除頻時脈品質提升。同時介紹光注入、光回饋系統與兩者結合系統之原理,與各系統產生的動態變化及其動態應用。在光注入結合光回饋系統產生的週期二動態之靜態分析中,光注入條件與主共振頻率呈正相關;而光回饋條件則使動態隨回饋時間變化,並在迴圈頻率約等於半導體雷射鬆弛震盪頻率或其子諧波時,有更大的主共振頻率可調性。在動態分析中,光注入系統中的主雷射載入33%RZ訊號,在20GHz除頻至10GHz分析中,可得峰對峰週期擾動為2016fs,加入光回饋系統可降至1587fs;在40GHz除頻至20GHz的分析中,光注入系統可得峰對峰週期擾動為840fs,加入光回饋系統可降低至511fs。

    An all-optical microwave frequency division by synchronized semiconductor lasers is numerically investigated in this study. Nonlinear period-two (P2) dynamic of optically-injected semiconductor lasers is applied for microwave frequency division. A fundamental frequency and its subharmonic are generated in power spectrum. By injecting a data-modulated optical signal, its additive clock signal will be frequency-locked toward the fundamental frequency simultaneously with a synchronized P2 dynamics. With optical feedback and effects of laser parameters on period-two oscillation, precise clock division is demonstrated by modulating the master laser at 20GHz and 40GHz.A locked subharmonic at 10GHz and 20GHz with period jitter of 2016fs and 840fs. Appropriate optical feedback can lower the period jitter to 1587fs and 511fs.

    摘要 .......................................i Abstract......................................ii 誌謝 ......................................ix 目錄 .......................................x 表目錄 .....................................xii 圖目錄 ....................................xiii 第一章 前言 ...............................1 1.1 研究背景 ...............................1 1.2 研究動機 ...............................4 1.3 全光注入半導體雷射系統 ...............8 1.4 論文架構 ..............................10 第二章 光注入半導體雷射系統 ..............11 2.1 半導體雷射理論模型 ......................11 2.2 半導體雷射模擬模型 ......................13 2.3 動態地圖與雷射本質參數 ..............17 2.3.1 動態介紹 ..............................17 2.3.2 雷射本質參數 ......................21 2.3.3 不同參數下的主共振頻率f_0 ..............24 第三章 光回饋半導體雷射系統 ..............29 3.1 理論模型與模擬模型 ......................29 3.2 動態地圖 ..............................32 3.3 光注入受半導體雷射受自身回饋系統f_0 ......35 3.3.1 動態地圖與5倍γ_n下的主共振頻率f_0 ......38 第四章 時脈除頻與復原 ......................42 4.1 光注入半導體雷射系統 ..............43 4.2 光注入半導體雷射受自身光回饋系統 ......50 4.3 比較分析與討論 ......................55 第五章 總結與未來展望 ......................59 參考文獻 ......................................61

    [1] K. C. Kao and G. A. Hochham, "Dielectric-fibre surface waveguides for optical frequency, "Proc. IEEE., vol. 113,pp.1151, 1966.
    [2] S. Kawanishi, "Ultra-speed optical time-division-multiplexed transmission technology based on optical signal processing," IEEE J. Quantum Electron., vol. 34, pp. 2064–2079, 1998.
    [3] S. A. Hamilton, B. S. Robinson, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100 Gb/s optical time-division multiplexed networks," J. Lightw. Technol., vol. 20, no. 12, pp. 2086–2100, 2002.
    [4] A. Takada, T. Sugie, and M. Saruwatari, "High-speed picosecond optical compression from gain-switched 1.3μm distributed feedback (DFB) LD through highly dispersive single-mode fiber," J. Lightwave Technol., vol. LT-5, pp. 1525–1533, 1987.
    [5] A. Takada, K. Sato, M. Saruwatari, and M. Yamamoto, “Pulse width tunable subpicosecond pulse generation from an actively mode-locked monolithic MQW laser/MQW electroabsorption modulator," Electron. Lett., vol. 30, pp. 898–899, 1994.
    [6] R. J. Manning, A. J. Poustie, and K. J. Blow, "All-optical clock division using a semiconductor optical amplifier loop mirror with feedback," Electron. Lett., vol. 32, pp. 1504–1506, 1996.
    [7] A. E. Kelly, R. J. Manning, A. J. Poustie, and K. J. Blow, "All-optical clock division at 10 and 20 GHz in a semiconductor optical amplifier based nonlinear loop mirror," Electron. Lett., vol. 34, pp. 1337–1339, 1998.
    [8] H. J. Lee and H. G. Kim, "Polarization-independent all-optical clock division using a semiconductor optical amplifier/grating filter switch," IEEE Photon. Technol. Lett., vol. 11, no. 4, pp. 469–471, 1999.
    [9] A. Mecozzi and J. Mørk, "Saturation induced by picosecond pulses in semiconductor optical amplifiers," J. Opt. Soc. Amer. B, vol. 14, pp. 761–770, 1997.
    [10] C. Y. Lou, L. Huo, G. Q. Chang, and Y. Z. Gao, "Experimental study of clock division using the optoelectronic oscillator," IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1178–1180, 2002.
    [11] H. Tsuchida and M. Suzuki, "40-Gb/s optical clock recovery using an injection-locked optoelectronic oscillator," IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 211–213, 2005.
    [12] M. Zhang, T. Liu, A. Wang, J. Zhang, and Y. Wang, "All-optical clock frequency divider using Fabry-Perot laser diode based on the dynamical period-one oscillation," Opt. Commun.,284, 1289–1294, 2010.
    [13] S. C. Chan and J.M. Liu, "Microwave frequency division and multiplication using an optically injected semiconductor laser," IEEE J. Quantum Electron., vol. 41, no. 9, pp. 1142–1147, 2005.
    [14] S. K. Hwang and J. M. Liu, "Dynamical characteristics of an optically injected semiconductor lasers," Optics Commun., vol. 183, no. 1/4, pp. 195–205, 2000.
    [15] T. B. Simpson, J.-M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, "Tunable photonic microwave oscillator self-locked by polarization-rotated optical feedback," Proc. IEEE Int. Freq. Control Symp., pp. 1–5, May 2012.
    [16] T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, "Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators," IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, p. 1500807, 2013.
    [17] K. H. Lo , S. K. Hwang , and S. Donati , "Optical feedback stabilization of photonic microwave period-one nonlinear dynamics of semiconductor lasers," Optics Express , 22 , pp.18648 - 18661, 2014.
    [18] T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclass. Opt., vol. 9, pp. 765–784, 1997.
    [19] J. M. Liu, H. F. Chen, and S. Tang, "Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical," Digital Communications Using Chaos and Nonlinear Dynamics Institute for Nonlinear Science, Chap. 10, pp. 285–340, 2006.
    [20] J. M. Liu et al., "Modulation bandwidth, noise and stability of a semiconductor laser subject to strong injection locking," IEEE Photon. Technol. Lett., vol. 9, pp. 1325–1327, 1997.
    [21] S. C. Chan, S. K. Hwang, and J. M. Liu, "Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser," Opt. Lett., vol. 31, pp. 2254–2256, 2006.
    [22] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, "Period-doubling route to chaos in a semiconductor laser subject to optical injection," Appl. Phys. Lett., vol. 64, pp. 3539–3541, 1994.
    [23] H. Someya, I. Oowada, H. Okumura, T. Kida, and A. Uchida, "Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection, " Opt. Exp., vol. 17, no. 22, pp. 19536–19543, 2009.
    [24] C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, "Synchronization of chaotic semiconductor lasers: Application to encoded communications," IEEE Photon. Technol. Lett., vol. 8, pp. 299–301, 1996.
    [25] J. M. Liu and T. B. Simpson, "Four-wave mixing and optical modulation in a semiconductor laser," IEEE J. Quantum Electron., vol. 30, pp. 957−965, 1994.
    [26] J. M. Liu, C. Chang, and T. B. Simpson, "Amplitude noise enhancement caused by nonlinear interaction of spontaneous emission field in laser diodes," Opt. Commun., vol. 120, pp. 282−286, 1995.
    [27] J. P. van der Ziel, J. L. Merz, and T. L. Paoli, "Study of intensity pulsations in proton-bombarded stripe geometry double-heterostructure AlxGa1xAs lasers," J. Appl. Phys., vol. 50, pp. 4620–4637, 1979.
    [28] G. P. Agrawal and N. K. Dutta, "Semiconductor Lasers, 1st ed.," New York: Van Nostrand Reinhold, pp. 35-40, pp. 232-258, 1993.
    [29] T. B. Simpson, J. M. Liu, and A. Gavrielides, "Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection," IEEE J. Quantum Electron., vol. 32, pp. 1456–1468, 1996.
    [30] S. Chan, S. Hwang, and J.-M. Liu, "Period-one oscillation for photonic microwave transmission using an optically-injected semiconductor laser," Opt. Exp., vol. 15, pp. 14921–14935, 2007.
    [31] J. Mork, B. Tromborg and J. Mark, "Chaos in semiconductor lasers with optical feedback: theory and experiment," IEEE J. Quant. Electron., Vol. 28, pp. 93-108, 1992.
    [32] X. Li, C. Kim, and G. Li, "All-optical passive clock extraction of 40 Gbit/s NRZ data using narrow-band filtering," Opt. Expr., vol. 12, no. 14, pp. 3196–3203, 2004.
    [33] S. C. Chan and J. M. Liu, "Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics," IEEE J. Sel. Topics Quantum Electron., vol. 10, pp. 1025–1032, 2004.
    [34] F. Y. Lin and J. M. Liu, "Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback," Opt. Commun., vol. 221, no. 1–3, pp. 173–180, 2003.

    [35] Q. Wang, L. Huo, Y. Xing, C. Lou, and B. Zhou, "Low-phase-noise clock recovery from NRZ signal and simultaneous NRZ-to-RZ format conversion," Photon. Technol. Lett., 2339–2341, 2013.
    [36] X. Tang, J. C. Cartledge, A. Shen, F. van Dijk, A. Akrout, and G.-H Duan, "Characterization of all-optical clock recovery for 40 Gb/s RZ-OOK and RZ-DPSK data using mode-locked semiconductor lasers," J. Lightw. Technol., vol. 27, pp. 4603–4609, 2009.
    [37] S. K. Hwang, J. M. Liu, and J. K. White, "35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking," IEEE Photon. Technol. Lett. 16, 972–974, 2004.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE