簡易檢索 / 詳目顯示

研究生: 袁正強
Yuan, Jenq-chyang
論文名稱: 小管內多種介質震波及爆震波傳播之數值探討
Numerical Investigation of Shock- and Blast-wave Propagation in a small Multiple-Medium Duct
指導教授: 梁勝明
Liang, Shen-min
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 138
中文關鍵詞: 多介質
外文關鍵詞: Multiple-Medium
相關次數: 點閱:65下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文探討震波與爆震波在小尺寸導管內的傳播。數值上用具有三階及五階準確度的加權基本無振盪法的尤拉及涅維爾-史托克斯(Navier-Stokes equations) 解子來探討這個問題。文中所使用的解子經由震波管、范諾線流(Fanno-line flow)和雷利線流(Rayleigh-line flow)等問題驗證了正確性。為了要了解爆震波在多介質中的傳播,本研究分為三個部分。第一部分:關心震波及爆震波在微小尺寸導管內以空氣及水為工作介質時如何傳播、以及衰減的問題。研究之內容則以四種一維流動模式來探討。模式一:模擬絕熱壁的一維無黏性 (inviscid-flow) 導管流,用來當作其它模式流動比較的參考基準。模式二:模擬有磨擦壁面效應(frictional effect) 的一維導管流,用來當作模式三的檢驗參考。模式三:導管壁面無擴散效應的可壓縮性的涅維爾-史托克斯方程式 (Navier-Stokes equations) 來模擬一維導管流。模式四:導管壁面有擴散效應的可壓縮性的涅維爾-史托克斯方程式來模擬一維導管流。以上結果發現:在小尺寸的空氣流管內,黏性與擴散效應對震波或爆震波前的速度有相當大的影響。小尺寸的水流管內,黏性與擴散效應對弱震波或爆震波前的速度亦有不可忽略的影響。
    部分二探討在兩種介質中,爆震波經過不同介質介面時、介面產生反射波的現象。本文選用的四種模擬介質,依序為類似人體組織的肌肉、腎、骨髓及脂肪。由於進入介質的爆震波強度非常弱,用聲波反射原理來驗證計算的反射波之物理性質,吾人發現結果非常吻合。
    部分三探討了在帶有血塊小尺寸管之中,爆震波在考慮有黏性及壁擴散效應下,通過此種介質時,它的傳播、衰減及反射現象。結果發現,當起始爆震波位置固定,黏性與擴散效應對爆震波前的峰值壓力影響,與小管中血塊位置確切有關;也就是說,當血塊距離起始爆震波越遠,其峰值壓力就越弱。此外,本研究亦計算出爆震波通過血塊的峰值壓力與引發的脈衝。

    In this study, a small multiple-medium duct with shock- or blast-wave propagation is considered and is numerically investigated by the Euler/Navier-Stokes solver with a 5th-order weighted essential non-oscillation scheme (WENO) except for special mention. Blast waves are generated by the rupture of two diaphragms of a high-pressure region located near the duct entrance. One blast wave produced will propagate downstream the duct. The developed solver is verified on a shock tube problem, a Fanno-line flow, and a Rayleigh-line flow.
    In order to understand the blast-wave propagation through multiple media, the dissertation content is divided into three parts. The first part concerns with the propagation and attenuation of shock or blast waves in the small duct. The flow problem of interest is primarily modeled by four one-dimensional flow models. Model 1 is to simulate the duct flow using an inviscid-flow model with an adiabatic wall, which is used to a baseline. Model 2 is the simulation of the duct flow with frictional-wall effects, which is used for a check point for model 3. Model 3 simulates the duct flow using the compressible Navier-Stokes equations without the mass-diffusion effect. Model 4 simulates the duct flow using the compressible Navier-Stokes equations with the mass-diffusion effect. It is found in a small-scale airflow duct that the combination of viscous dissipation and mass diffusion has a significant effect on the shock-or blast-wave front velocity. In a small-scale water-flow duct, the combination of viscous dissipation and mass diffusion also has a non-negligible effect on weak shock-or blast-wave front velocity.
    The reflection and transmission of blast wave through the interface of the media is investigated by using a 3rd-order WENO scheme in order to avoid numerical spurious oscillations for very weak shock waves. Part two is concerned with the physical phenomena of underwater blast wave propagating through two media without viscous and mass-diffusion effects for comparing with the acoustic principle of reflection and transmission. In addition to water, four kinds of material that have analogy to different tissues of human body are considered as a second medium and embedded in the water duct. Because the incident underwater blast wave is very weak, close to an acoustic wave, the computed peak pressures of transmitted blast wave front for four kinds of simulated tissues are in good agreements with those obtained by the acoustic principle.
    In part three, we consider the propagation of blast-wave in a small-scale multiple-medium duct with a simulated clot under the condition of viscous and mass diffusion effects. The propagation, attenuation and reflection of the blast wave in inviscid- and viscous-flow models with mass diffusion effect are compared. It is found that the differences of the computed flow properties between these two flow models are considerably moderate. In addition, the pressure forces and the induced impulses by a moving blast wave at the clot interface are computed, which may be helpful for medical application.

    中文摘要 I 誌謝 III 第一章 序論 IV 第二章 數學模式 V 第三章 數值方法 VI 第四章 結果與討論 VII 第五章 結論與建議 VIII ABSTRACT i CONTENT iii LIST OF TABLES v LIST OF FIGURES vi NOMENCLATURES x CHAPTER I INTRODUCTION 1 1.2 Shock- and Blast-Waves in Small-Scale Duct 3 1.3 Blast-Waves Propagation in a Multiple-Medium 5 1.4 Blast-Wave’s Propagation in a Blood Vessel with Simulated Clot Considering Viscous and Mass Diffusion 8 1.5 Objectives 9 CHAPTER II MATHEMATICAL FORMULATION 11 2.1 One-Dimensional Small-Scale Ducts with Mass-Diffusion Effects 11 2.2 One-Dimensional Duct Flow without Mass Diffusion 13 2.2.1 Air Duct Flow 13 2.2.2 Liquid Duct Flow with a Multiple Medium 14 2.3 Liquid Flow in a Small-Scale Duct with Mass Diffusion Effects 15 2.4 Acoustic Principle of Reflection and Transmission 15 2.5 Impulse function 16 CHAPTER III NUMERICAL METHOD 17 3.1 Introduction 17 3.2 The WENO scheme 18 3.3 The Euler System 22 3.4 Time Discretization 23 3.5 Choice of Time step 24 3.6 Initial condition 24 3.7 Boundary condition 25 CHAPTER IV RESULTS AND DISCUSSIONS 26 4.1 Validation of the Present Solver 26 4.1.1 Shock Tube Problem 26 4.1.2 Diverging Nozzle Flow 27 4.1.3 A Fanno-line Flow 28 4.1.4 A Rayleigh-line Flow 28 4.1.5 A Problem of Shock-Wave Reflection in Water Tube 29 4.2 Shock- and Blast-Wave Propagation in Small-Scale Ducts 30 4.2.1 Case 1: Airflow in Small-Scale Ducts 30 4.2.2 Case 2: A Small-Scale Water Duct Flow 36 4.2.3 Summary 38 4.3 Numerical Investigation of Blast-Wave Propagation in a Multiple Medium 38 4.3.1 Propagation of Blast-Wave in a Multiple Medium without Viscous Dissipation and Mass Diffusion Effect 40 4.3.2 Propagation of Blast-Wave in a Small-Scale Duct with Simulated Clot with Viscous and Mass Diffusion Effect 44 4.3.2.1 Inviscid Flow 45 4.3.2.2 Viscous Flow with Mass Diffusion 48 4.3.2.3 Induced Velocity and Impulse per Unit Area 49 4.3.2.4 Summary 50 CHAPTER V CONCLUSION AND SUGGESTIONS 51 5.1 Conclusions 51 5.2 Suggestions 53 REFERENCES 54 APPENDIX 61 VITA 137 PUBLICATION LIST 138

    1. Abgrall, R., and Karni, S., “Computations of Compressible Multifluids,” J. Comput. Phys., Vol. 169, pp. 594-623, 2001.
    2. Bozzao, L., Fantozzi, L. M., Bastianello, S., Bozzao, A., Fiechi C., :Stroke 20, pp. 735-740, 1989.
    3. Brouillette, M., “Shock Waves at Microscales,” Shock waves, 13: pp.3-12, 2003.
    4. Brouillette, M., “One-Dimensional Model for Microscale Shock Tube Flows,” Symposium on Interdisciplinary Shock Wave Research, Sendai, Japan, March 22-24, 2004.
    5. Chang, C. H. and Liou, M. S., “A Conservative Compressible Multifluid Model for Multiphase Flow: Shock-Interface Interaction Problem,” 17th AIAA Computational Fluid Dynamics Conference, Toronto, Ontario, Canada., June 6-9, 2005.
    6. Chaussey, C., Schmiedt, E., Jocham, D., Walter, V., Brendel, W., Forssmann, B. and Hepp, W., “Extracorporeal Shock Wave Lithotripsy,” Karger., 1982.
    7. Chen, H. and Liang, S. M., “Planar Blast/Vortex Interaction and Sound Generation,” AIAA J., Vol. 40, No. 11, pp. 2298-2340, 2002.
    8. Delius, M., “ Medical Applications of Shock Waves,” Shock Wave, 4, pp 55-72, 1994.
    9. Dewey, J. M., “The Properties of a Blast Wave Obtained from an Analysis of the Particle Trajectories,” Proc. R. Soc. Lond. A. 324, pp. 275-299, 1971.
    10. Emrich, R.J. and Curtis, C.W., “Attenuation in the Shock Tube,” J. of Applied Physics, Vol. 24, pp. 360-363, 1953.

    11. Fedkiw, R. P., Aslam, T., Merriman, B. and Osher, S., “A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method),” J. Comput. Phys., Vol. 152, pp. 457-492, 1999.
    12. Goss, S. A., Johnston, R. L. and Dunn, F., “Comprehensive Compilation of Empirical Ultrasonic Properties of Mammalian Tissue,” J. Acoust. Soc., Am 64., pp. 423-456, 1978.
    13. Harten, A., Engquist, B., Osher S and Charkravarthy, S., “Uniformly High-Order Accurate Essentially Non-Oscillatory Schemes III,” J. Comput. Phys., Vol. 71, pp. 231-303, 1987.
    14. Hatazawz, J., Shimosegawa, E., Toyoshima, H., Ardekani, B. A., Suzuki, A., Okudera, T., and Miura, Y., :Stroke 30, pp. 800-806, 1999.
    15. Hayakawa, S. and Takyama, K., “Shock Wave Propagation in Model Tissue of Medical Application of Shock Wave,” Proc. 21st International Symposium on Shock Waves, Great Keppel Island, Vol. 2, pp. 779-784, 1997.
    16. Heustler, E., “Destruction of Kidney Stones by Means of Autofocused Guidied Shock-Waves,” 2nd European Congress Ultrasonic and Medicine, 1975.
    17. Hirano, T., “Laser-Induced Liquid Jet Accompanied with Shock Wave Generation, A New Drug Delivery System for Therapy of Cerebral Embolisms,” Proc 23rd International Symposium on Shock Waves, Fort Worth, Texas, USA, Vol. 1: pp. 904-910, July 22-27, 2001.
    18. Hirt, W. and Nichols, B. D., “Volume of Fluid Method for the Dynamics of Free Boundaries,” J. Comput. Phys., Vol. 39, pp. 201-225, 1981.
    19. Hoffman, K. A., “Computational Fluid Dynamics for Engineers,” Engineering Education System, Austin, TX, 1989.
    20. Hollyer, RN., “Attenuation in the Shock Tube: I. Laminar Flow,” J. of Applied Physics, Vol. 27, pp. 254-261, 1956.
    21. Hosseini, S.H.R., Moosavi-Nejad, S. and Takayama, K., “Study of Underwater Shock Wave Propagation in Non-Uniform Media for Medical Application,” Proc. Symp. on Shock Waves, Japan, Tokyo, pp. 617-620, 2000.
    22. Hu, T. C. J. and Glass, I. I., “Blast Wave Reflection Trajectories from a Height of Burst,” AIAA J.,Vol. 24, pp. 607-610, 1986.
    23. Hu, X. Y., and Khoo, B. C., “Numerical Studies on Shock Cell Interaction,” Proc 24Th International Symposium on Shock Waves, Chinese Academy of Science, Beijing, China, Paper number 2825, July 11-16, 2004.
    24. Ikeda, K., “Application of Extrocorpreal Shock Wave on Bone: Basic and Clinic Study,” Proc 22nd International Symposium on Shock Waves, Imperial College, London, UK, Vol.1: pp. 623-626, July 18-23, 1999.
    25. Jamaluddin, A. R., Ball, G. J. and Leighton, T. G., “Shock/Bubble Interaction near a rigid Boundary in Shock Wave Lithotripsy” Proc 24Th International Symposium on Shock Waves, Chinese Academy of Science, Beijing, China, Paper number 1281, July 11-16, 2004.
    26. Jiang, G.-S. and Shu, C.-W., “Efficient Implementation of Weighted ENO Scheme,” J. Comput. Phys., Vol. 126, No. 1, pp. 202-228, 1996.
    27. Johns, J. E. A., “Gas Dynamics,” Allyn and Bacon, Boston, 2nd Edition, 1984
    28. Kambe, M., Ioritani, N., Shirai, S., Kambe, K., Tezuka, F., Kaji, M., Saitoh, T., Murakami, Y., Kuwahara, M., Funato, T., Gamo, M., Takayama, K., Orikasa, S., Kanamaru, R., “Microscopic Pores Opened by Shock Wave on Cancer Cell Surfaces: Morphological and Functional features,” Japan J Endourol ESWL, Vol. 9,pp. 161-167, 1996
    29. Karni, S., “Multicomponent Flow Calculations by a Consistent Primitive Algorithm,” J. Comput. Phys., Vol. 112, pp. 31-43, 1994.
    30. Khan, S. R., Hackett, R. L. and Finlayson, B., “Morphology of Urinary Stone Particles Resulting from ESWL Treatment,” J. Urol 136:1367, 1986.
    31. Liu, X. D., Osher, S. and Chan. T., “Weighted Essentially Non-Oscillatory Scheme,” J. Comput. Phys., Vol. 115, pp. 200-212, 1994.
    32. Luo, H., Baum, J. D., and Lohner, R., “On the Computation of Multimaterial Flows Using ALE Formation,” J. Comput. Phys., Vol. 194, pp 304-328, 2004
    33. Marumoto, M.,Yamashita, H., Hosseini, S. H. R., Saito, T. and Takayama, K., “Attenuation of Underwater Shock Waves Propagating Through Thin Porous Layers,” Proc. 23rd International Symposium on Shock Waves, Fort Worth Texas, USA, July 22-27, 2001.
    34. Nakagawa, A., Kusaka, Y., Hirano, T,. Sato, M., Saito, T., Shirano, R. and Takayama, K., “Histological Evaluation of Pressure-Dependent Shock Wave Induced Brain Damage,” Proc. International Symp. on Shock Waves in Japan, School of Engineering Gunma University, Kiryu Gunma Japan, March 13-15, pp. 417-420, 2003.
    35. Pullian, T, H., “Euler and Thin Layer Navier-Stokes Codes: ARC2D, ARC3D,” NOTES for COMPUTATIONAL FLUID DYNAMICS USER’S WORKSHOP, The University of Tennessee Space Institute Tullahoma, Tennessee, March 12-16, 1984.
    36. Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput. Phys., Vol. 43, pp. 357-372, 1981.
    37. Saito, T. and Marumoto, M., “Experimental and Numerical Studies of Underwater Shock Wave Attenuation,” Shock Waves, Vol. 13, pp. 139-148, 2003.
    38. Saurel, R. and Abgrall, R., “A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows,” J. Comput. Phys., Vol. 150, pp. 425-467, 1999.
    39. Shu, C-W. and Osher, S., “Efficiently Implementation of the Essentially Non-Oscillatory Shock-Capturing Schemes II,” J. comput. Phys., Vol. 83, pp. 32-78, 1989.
    40. Shu, C.-W. and Osher, S., “Efficiently Implementation of the Essentially Non-Oscillatory Shock-Capturing Schemes,” J. Comput. Phys. Vol. 77, pp. 439-471, 1988.
    41. Smith, D “Smith’s Textbook of Endourology” St. Louis, Mo: Quality Medical Pub., 1996.
    42. Sommerfeld, M. and H. M., “Experimental and Numerical Studies of Shock Wave Focusing in Water,” Experimental in Fluids Vol. 6, pp 209-216, 1988.
    43. Sorensen, A. G., Buonanno, F. S., Gonzalez, R. G., Schwamm, L. H., Lev, M. H., Huang., Hellinger, F. R., Reese, T. G., Weisskoff, R. M., Davis, T. L., Suwanwela, N., Can, U., Moreira, J. A., Copen, W. A., Look, R. B., Finklestein, S. P., Koroshetz, W. J., :Radiology199, pp. 391-401, 1996.
    44. Sun, M., Ogawa, T. and Takayama, K., “Shock Propagation in Narrow Channels,” Proc 23rd International Symposium on Shock Waves, Forth Worth Texas, USA, July 22-27, 2001.
    45. Sussman, M., Smereka, P. and Osher, S. “A Level Set Approach for Computing Solutions Incompressible Two-Phase Flows,” J. Comput. Phys.,Vol.114, pp146-159, 1994.
    46. Tachibana K, Tachibana S., “Application of Ultrasound Energy as a New Drug Delivery System,” Jpn J Appl Phys 38: 1-5 3014-3019, 1999.
    47. Takayama, K., “Application of Shock Wave Research to Medicine,” Proc 22nd International Symposium on Shock Waves, Plenary Lecture, London, Vol. 1: 23-32, 1999.
    48. Takayama, K., Esashi, H. and Sanada, N “Propagation and focusing of spherical shock waves produced by underwater micoexplosions”In: Proc 14th International Symposium on Shock Tubes and Shock Waves, Kensington, Australia. pp. 553-562, 1983.
    49. Takayuki, H., Makoto K., Hiroshi U., and Akira T., “Laser-Induced Liquid Jet Accompanied with Shock Wave Generation: A New Drug Delivery System for the Therapy of Cerebral Embolisms” Proc. 23rd International Symposium on Shock Waves, Fort Worth Texas, USA. July 22-27, 2001.
    50. Tamagawa, M., Yamanoi, I. and Matsumoto, A., “Deformation Process and Disintegration for Microcapsules Including Gas Bubbles by Shock Waves in Drug Delivery System,” Proc. 23rd International Symposium on Shock Waves, Fort Worth Texas, USA. July 22-27, 2001.
    51. Thompson, K. W., “Time Dependent Boundary Conditions for Hyperbolic Systems I,” J. Comput. Phys., Vol. 68, No. 1, pp. 1-24, 1987.
    52. Thompson, K. W., “Time Dependent Boundary Conditions for Hyperbolic Systems II,” J. Comput. Phys., Vol. 89, No. 2, pp. 439-461, 1990.
    53. Umemura, A., Suzuka, T. and Yamada, K., : J Neurol Neurosurg Psychiatry 69, pp. 472-478, 2000.
    54. Van Everdingen, K. J., Van der Grond, J., Kappelle, L. J., Ramos L M P., Mali, W P T M: Stroke 29, pp. 1783-1790, 1998.
    55. Watanabe, H., “Micro-explosions,” Proc. 3rd Sym. on Advanced Medical Technology, pp. 186-192, 1989.
    56. Watanable, H. and Oinuma, S., “A Study on Application of micro-Explosions to living tissue,” Japan Uro J Vol. 68, pp. 248-248, 1977.
    57. Watanabe, H., Uchida, M., Kitamura, K., Imaida, Y. and Yoneda, K., “Microexplosion Lithotripsy for Bladder and Renal Calculi,” In: Takayamak (ed.) Shock waves, Proc. 18th , Sendai, pp. 1195-1200, 1991.
    58. Zagzebski, James A.,“Essentials of Ultrasound Physics,”St. Louis, Missouri, 1996.

    下載圖示 校內:立即公開
    校外:2007-06-30公開
    QR CODE