| 研究生: |
蔡維文 Tsai, Wei-Wen |
|---|---|
| 論文名稱: |
影像數據疊合研究 Developing the Procedure to Combine Several Frames of an Object into a Single Frame |
| 指導教授: |
鄭育能
Cheng, Yu-Nemg |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 疊代型濾波器、光跡解析,影像疊加 |
| 外文關鍵詞: | gray level saturation, iterative filter, image converge |
| 相關次數: | 點閱:74 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究使用數位相機拍攝之影像,反向推定投射在一反射屏幕上之光域的照度分佈。為了應用數位相機掘取二維影像的能力,相機所拍攝的影像,是透過光源投射在某一顯像平面的,所產生的光跡分佈圖。
使用相機讀取此種光跡分佈有因相機取得影像時所發生的問題:入射光太亮造成反射光度飽和、太暗無法產生反射光、及反射光度與相機成像之灰階值是非線性關係等三種特性,又一般商用數位相機本身的灰階成像,也只有256 個灰階值的有限解析度。為了克服上述4 種限制對數據精確度的負面影響,本文改變投射光源的電源之電壓,攝得數張影像,將這些影像疊合成一張解析度高於256 個灰階刻度的光跡分佈圖。本文先用光電管量取照度和相機讀取其在反射面之成像的灰階值,以得到入射光與成像灰階值的關係。其次應用二維疊代式濾波器移除高頻的雜訊後,得到平滑且高解析度的影像圖。假設不同電源電壓不會影響相對的光跡分佈圖,切除最高和最低灰階值之像素後,將數張影像之灰階與光度數據用最小平方誤差法,疊合成同一張影像。本文應用數個實例,顯示直接量取光源在反射面的光跡誤差約可得到5%以下光流明之絕對誤差的精確度。
The gray level distribution of an photo frame taken by a digital camera from the image on a screen, which is generated by an incident light source projecting on the screen, is employed to calculate the light intensity. distribution on the screen. The relation between the light intensity and the gray level on the screen is obtained by experiment. Since there is significantly large noise on an image, the iterative filter basing on the Gaussian smoothing
is employed to remove the noise and preserves the mean information. If the light intensity of the incident ray is larger than a certain value, the gray level of the resulting frame shows a saturated response. In order to overcome this difficulty, several frames are taken by varying the voltage of the light source so that some are unsaturated and others have saturated situation. The least squares method is employed to combine these frames into a single frame. The numerical tests show that the proposed numerical scheme has an acceptable error during the combination procedure.
1. R. C. Gonzalez, and R. E. Woods, 1992, ”Digital Image Processing” Addison-Wesley.
2. 繆紹綱, 2000, “數位元影像處理 : 活用-matlab”, 全華科技圖書。
3. S. E. Umbaugh, 1998, ”Computer Vision and Image Processing : a Practical Approach Using CVIPtools”, Prentice Hall.
4. 紀凱屏, 2000, “影像雜訊過濾方法與效果之探討”, 國立成功大學測量系碩士論文。
5. G. Fasshauer, “Approximate Moving Least-Squares Approximations: A Fast and Accurate Multivariate Approximation Method,” Curve and Surfaces Fitting, vol.1, no.1, pp.1-10, 2002.
6. K. M. Liew, Y. Q. Huang, and J. N. Reddy, “A Hybrid Moving Least Squares and Differential Quadrature (MLSDQ) Meshfree Method,” Int. J. of Computational Engineering Science,” vol.3, No.1, pp.1-12. 2002.
7. Y. N. Jeng, “The Moving Least Squares and Least p-Power Methods for Random Data,” The 7-th National Computational Fluid Dynamics Conference, P-9 to P-14, Aug. 2000.
8. Y. N. Jeng, Huang, P. G., and Chen, H., “Wave Decomposition in Physical Space Using Iterative Moving Least Squares Methods,” Proceedings of 11-th National Computational Fluid Dynamics Conference, Tai-Tung, paper no. CFD11-0107, Aug. 2004.
9. Y. N. Jeng, Y. C. Cheng, and T. M. Yang, “Wave Decomposition Across Discontinuity Using Iterative Moving Least Squares Methods,” Proceedings of 11-th National Computational Fluid Dynamics Conference, Tai-Tung, paper no. CFD11-0110, Aug. 2004.
10. Y. N. Jeng and P. G.. Huang, “Evaluation of Derivatives from Composite Wave via Iterative Filter and A Numerical Method of Solving Partial Differential Equations,” Proceedings of 11-th National Computational Fluid Dynamics Conference, Tai-Tung, paper no. CFD11-0111, Aug. 2004.
11. 楊宗明“應用離散移動式最小平方法誤差法於疊代式高/低通濾波器“ 國立成功大學航空太空工程學系碩士論文,JULY 2004。
12. 羅兆文“局部互相關系數法在影像點經由幾何轉換後的位置確認研究“國立成功大學航空太空工程學系碩士論文,JULY 2004
13. ,A. Adams, ”The Camera ” New York Graphic Society,Boston,1980.
14. 魏慶全“光學鏡頭與感測元件偶合技巧配合測試圖設計之研究”中興大學機械工程學系碩士論文JULY 2004。
15. Eugene Hecht, ” Optics Fourth Edition” Addison Wesley , 2002