| 研究生: |
張宏全 Chang, Hung-Chuan |
|---|---|
| 論文名稱: |
流感病毒非結構蛋白1介導的免疫逃脫的新見解 Novel insights into influenza A virus nonstructural protein 1-mediated immune evasion |
| 指導教授: |
凌斌
Ling, Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 流行性感冒病毒A型 、非結構蛋白1 、RIG-I 、TRAF3 、TLR3 、TLR7 、第一型干擾素 |
| 外文關鍵詞: | Influenza A virus (IAV), non-structural protein 1 (NS1), RIG-I, TRAF3, TLR3, TLR7, type I interferons |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A型流感病毒(IAV)是引起人類和其他物種呼吸道疾病的主要病原體。已知幾種RNA感應器,包括細胞質RIG-I和內體Toll樣受體3(TLR3)和TLR7,參與檢測IAV RNA以觸發I型乾擾素(IFN)介導的抗病毒免疫。同時,IAV採用多種策略來逃避宿主細胞中的抗病毒防禦以成功複製。例如,IAV非結構蛋白1(NS1)顯示通過與RIG-I競爭結合病毒RNA來干擾RIG-I感知。我們對於IAV NS1是否有其他躲避宿主抗病毒免疫反應的方式感興趣。我們實驗室以前的研究揭示了NS1 藉由新的非RNA結合機制來逃脫免疫反應。NS1使用其TRAF3結合基序(TIM)結合E3泛素連接酶TRAF3以阻斷RIG-I信號傳導以進行IFN誘導。除了RIG-I外,還顯示TRAF3連接TLR3和TLR7與I型IFN誘導。鑑於這些事實,我的論文工作集中在以下目標:(1)進一步研究在常規樹突狀細胞(cDC)中IAV NS1拮抗RIG-I信號傳導中的功能作用。 (2)進一步研究NS1是否可能干擾TLR3和TLR7等其他RNA傳感途徑。(3)目進一步闡明IAV NS1 TIM突變病毒在IAV感染期間的體內作用。我們的離體研究表明,在感染期間,攜帶TIM突變的IAV NS1突變病毒與IAV WT病毒相比在cDC誘導了更高的IFN-β產生。此外,IAV NS1 TIM突變體比較無法阻斷TLR3-TRIF-TRAF3和TLR7途徑對I型IFN誘導。體內結果顯示,與IAV WT病毒相比,感染IAV NS1 TIM突變病毒的小鼠有更好的存活率。此外,IAV NS1 TIM突變體病毒在感染的早期階段在小鼠肺中誘導更高的I型IFN產生。有趣的是,我們的疫苗接種實驗表明,IAV NS1 TIM突變病毒的刺激提供保護力針對致死劑量的WT病毒感染。總之,我們的數據表明,IAV NS1通過以不依賴RNA結合的方式結合TRAF3並抵消多種RNA傳感途徑來達到抵抗宿主抗病毒免疫。我們的實驗室發表的研究表明,TBK1-associated protein in endolysosomes(TAPE)調節TLR3,TLR4和RIG-I樣受體對I型乾擾素產生的途徑,在感染IAV的小鼠中提供保護性免疫能力。因此,在我的論文中對進一步闡了TAPE在預防IAV感染中的功能作用感興趣。 ELISA的結果顯示,在IAV感染,與WT cDC相比,TAPE缺陷的cDC在I型IFN產生中受損。該結果表明TAPE對於觸發原代cDC中針對IAV感染的I型IFN產生是至關重要的。
Influenza A virus (IAV) is the main pathogen causing respiratory diseases in humans and other species. It is known that several RNA sensors, including cytosolic RIG-I, endosomal Toll-like receptor 3 (TLR3) and TLR7, are involved in detecting IAV RNA to trigger type I interferon (IFN)-mediated antiviral immunity. Meantime, IAV employs the multiple strategies to evade antiviral defenses for its successful replication in host cells. Notably, the IAV nonstructural protein 1 (NS1) is shown to interfere RIG-I sensing via competing with RIG-I for binding viral RNA. It is of interest to further explore if IAV NS1 may employ other evasion mechanisms to impair antiviral responses. Previous studies from our group revealed a novel NS1-mediated immune evasion mechanism by which NS1 targeted an E3 ubiquitin ligase TRAF3 via a TRAF3-binding motif (TIM) in the C-terminal effector domain, resulting in the blockade of RIG-I signaling to type IFN induction. In addition to RIG-I, TRAF3 is also shown to link TLR3 and TLR7 signaling to type I IFN induction. Given these facts, my thesis work focuses on the following aims: (1) to study the functional role of IAV NS1 in counteracting RIG-I signaling in conventional dendritic cells (cDCs), (2) to study if NS1 may interfere with other RNA sensing pathways like TLR3 and TLR7, and (3) to further study the in vivo role of IAV NS1 TIM mutant virus during IAV infection. Our ex vivo studies indicated that during infection, IAV NS1 mutant virus carrying TIM mutation compared to IAV WT virus induced higher IFN-β production from cDCs. In addition, IAV NS1 TIM mutant showed the less blocking effect on the TLR3 and TLR7 pathways to type I IFN induction. In vivo results showed that mice infected with IAV NS1 TIM mutant virus compared to IAV WT virus led to a better survival rate. Further, infection of mice with IAV NS1 TIM mutant virus induced higher type I IFN production in the mouse lung at the early stage. Of interest, our vaccination experiments showed that the challenge of mice with IAV NS1 TIM mutant virus conferred protection against a lethal dose of WT virus infection. In summary, our data indicate that IAV NS1 counteracts multiple RNA sensing pathways through targeting TRAF3 in an RNA binding-independent manner, leading to the evasion of type I IFN-mediated antiviral defenses. Previous work from our lab has shown that TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator linking the TLR3, TLR4, and RIG-I like receptors pathways to type I IFN production and plays a key role in trigger protective immunity against IAV infection in vivo. Thus, my thesis work further assesses the functional role of TAPE in cDCs in response to IAV infection. Results from ELISA showed that TAPE deficiency impaired type-I IFN production from primary dendritic cells upon IAV infection. This result suggests that TAPE is critical for cDCs to trigger type I IFN production in response to IAV infection.
1. J. Wahlgren, Influenza A viruses: an ecology review. Infect Ecol Epidemiol 1, (2011).
2. J. K. Taubenberger, D. M. Morens, The Pathology of Influenza Virus Infections. Annu Rev Pathol 3, 499–522. (2008).
3. V. N. Petrova, C. A. Russell, The evolution of seasonal influenza viruses. Nat Rev Microbiol 16, 47-60 (2018).
4. Rogier Bodewes, G. F. Rimmelzwaan, A. D. Osterhaus, Animal models for the preclinical evaluation of candidate influenza vaccines. Expert Rev. Vaccines, 59–72 (2010).
5. R. J. Garten et al., Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325, 197-201 (2009).
6. Y. Gu et al., Role of the Innate Cytokine Storm Induced by the Influenza A Virus. Viral Immunol, (2019).
7. H. Namkoong et al., Obesity worsens the outcome of influenza virus infection associated with impaired type I interferon induction in mice. Biochem Biophys Res Commun 513, 405-411 (2019).
8. A. V. Vasin et al., Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. Virus Res 185, 53-63 (2014).
9. C. Paules, K. Subbarao, Influenza. The Lancet 390, 697-708 (2017).
10. T. Samji, Influenza A: Understanding the Viral Life Cycle. YALE JOURNAL OF BIOLOGY AND MEDICINE, 153-159 (2009).
11. C. C. Wang et al., Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci U S A 106, 18137-18142 (2009).
12. C. Y. Wu et al., Influenza A surface glycosylation and vaccine design. Proc Natl Acad Sci U S A 114, 280-285 (2017).
13. D. Corti et al., Tackling influenza with broadly neutralizing antibodies. Curr Opin Virol 24, 60-69 (2017).
14. I. Kosik, J. W. Yewdell, Influenza Hemagglutinin and Neuraminidase: Yin(-)Yang Proteins Coevolving to Thwart Immunity. Viruses 11, (2019).
15. L. J. HOLSINGER, R. A. LAMB, Influenza Virus M2 Integral Membrane Protein Is a Homotetramer Stabilized by Formation of Disulfide Bonds. Virology 183, 32-43 (1991).
16. Lawrence H. Pinto, L. J. Holsinger, R. A. Lambt, Influenza Virus M2 Protein Has Ion Channel Activity Cell 69, 517-528 (1992).
17. T. Ichinohe, I. K. Pang, A. Iwasaki, Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nature Immunology 11, 404-410 (2010).
18. D. P. Nayak, R. A. Balogun, H. Yamada, Z. H. Zhou, S. Barman, Influenza virus morphogenesis and budding. Virus Res 143, 147-161 (2009).
19. D. P. Nayak, E. K. Hui, S. Barman, Assembly and budding of influenza virus. Virus Res 106, 147-165 (2004).
20. A. Iwasaki, P. S. Pillai, Innate immunity to influenza virus infection. Nature Reviews Immunology 14, 315-328 (2014).
21. B. Pulendran, M. S. Maddur, in Influenza Pathogenesis and Control - Volume II. (2014), chap. Chapter 405, pp. 23-71.
22. O. Takeuchi, S. Akira, Innate immunity to virus infection. Immunological Reviews 227, 75-86 (2009).
23. I. K. Pang, A. Iwasaki, Inflammasomes as mediators of immunity against influenza virus. Trends Immunol 32, 34-41 (2011).
24. A. A. Benitez et al., In Vivo RNAi Screening Identifies MDA5 as a Significant Contributor to the Cellular Defense against Influenza A Virus. Cell Rep 11, 1714-1726 (2015).
25. I. Y. Chen, T. Ichinohe, Response of host inflammasomes to viral infection. Trends Microbiol 23, 55-63 (2015).
26. R. J. Thapa et al., DAI Senses Influenza A Virus Genomic RNA and Activates RIPK3-Dependent Cell Death. Cell Host Microbe 20, 674-681 (2016).
27. B. M. Hartmann et al., Pandemic H1N1 influenza A viruses suppress immunogenic RIPK3-driven dendritic cell death. Nature Communications 8, (2017).
28. S. Crotta et al., Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. PLoS Pathog 9, e1003773 (2013).
29. Y. Sun, J. Jiang, P. Tien, W. Liu, J. Li, IFN-λ: A new spotlight in innate immunity against influenza virus infection. Protein & Cell 9, 832-837 (2018).
30. C. F. Basler et al., Macrophage-expressed IFN-β Contributes to Apoptotic Alveolar Epithelial Cell Injury in Severe Influenza Virus Pneumonia. PLoS Pathogens 9, (2013).
31. S. Koyama et al., Differential Role of TLR- and RLR-Signaling in the Immune Responses to Influenza A Virus Infection and Vaccination. The Journal of Immunology 179, 4711-4720 (2007).
32. N. A. Jewell et al., Differential Type I Interferon Induction by Respiratory Syncytial Virus and Influenza A Virus In Vivo. Journal of Virology 81, 9790-9800 (2007).
33. H. Kato et al., Cell Type-Specific Involvement of RIG-I in Antiviral Response. Immunity 23, 19-28 (2005).
34. Sandra S. Diebold, Tsuneyasu Kaisho, Hiroaki Hemmi, S. Akira, C. R. e. Sousa, Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA. (2004).
35. D. Goubau, S. Deddouche, C. Reis e Sousa, Cytosolic sensing of viruses. Immunity 38, 855-869 (2013).
36. X. Wu et al., Inhibition of Influenza A Virus Replication by TRIM14 via Its Multifaceted Protein-Protein Interaction With NP. Front Microbiol 10, 344 (2019).
37. E. A. Hemann et al., Interferon-lambda modulates dendritic cells to facilitate T cell immunity during infection with influenza A virus. Nat Immunol, (2019).
38. H. Kato et al., Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105 (2006).
39. H. Kato et al., Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5. The Journal of Experimental Medicine 205, 1601-1610 (2008).
40. M. Kandasamy et al., RIG-I Signaling Is Critical for Efficient Polyfunctional T Cell Responses during Influenza Virus Infection. PLoS Pathog 12, e1005754 (2016).
41. T. Kawai et al., IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6, 981-988 (2005).
42. R. Yoshida et al., TRAF6 and MEKK1 Play a Pivotal Role in the RIG-I-like Helicase Antiviral Pathway. Journal of Biological Chemistry 283, 36211-36220 (2008).
43. S. K. Saha et al., Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. European Molecular Biology Organization 25, 3257–3263 (2006).
44. D. Arnoult, F. Soares, I. Tattoli, S. E. Girardin, Mitochondria in innate immunity. EMBO reports 12, 901-910 (2011).
45. G. Liu et al., Nuclear-resident RIG-I senses viral replication inducing antiviral immunity. Nat Commun 9, 3199 (2018).
46. N. R. Meyerson et al., Nuclear TRIM25 Specifically Targets Influenza Virus Ribonucleoproteins to Block the Onset of RNA Chain Elongation. Cell Host Microbe 22, 627-638 e627 (2017).
47. J. Pothlichet et al., Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLoS Pathog 9, e1003256 (2013).
48. S. Akira, S. Uematsu, O. Takeuchi, Pathogen recognition and innate immunity. Cell 124, 783-801 (2006).
49. S. N. Lester, K. Li, Toll-like receptors in antiviral innate immunity. J Mol Biol 426, 1246-1264 (2014).
50. L. Alexopoulou, A. C. Holt, R. Medzhitov, R. A. Flavel, Recognition of double-stranded RNA and activation of NF-kB by Toll-like receptor 3. Nature 413, 18 (2001).
51. J. M. Lund et al., Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A 101, 5598-5603 (2004).
52. L. Guillot et al., Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 280, 5571-5580 (2005).
53. O. Schulz et al., Toll-like receptor 3 promotes crosspriming to virus-infected cells. Nature 433, 884-887 (2005).
54. S. M. F. K. M. K. M. K. K. I. H. K. M. O. S. S. S. W. H. T. T. K. M. Adachi, Synthetic double‐stranded RNA induces multiple genes related to inflammation through Toll‐like receptor 3 depending on NF‐κB and/or IRF‐3 in airway epithelial cells. Clinical and Experimental Allergy 36, 1049–1062 (2006).
55. C. Park et al., TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia 53, 248-256 (2006).
56. H. Kim et al., Double-stranded RNA mediates interferon regulatory factor 3 activation and interleukin-6 production by engaging Toll-like receptor 3 in human brain astrocytes. Immunology 124, 480-488 (2008).
57. R. Le Goffic et al., Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J Immunol 178, 3368-3372 (2007).
58. R. Le Goffic et al., Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog 2, e53 (2006).
59. T. Kawai et al., Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5, 1061-1068 (2004).
60. H. Hemmi et al., Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3, 196-200 (2002).
61. H. Pan et al., Ipr1 gene mediates innate immunity to tuberculosis. Nature 434, 767-772 (2005).
62. V. Deretic, Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Curr Opin Immunol 24, 21-31 (2012).
63. H. K. Lee, J. M. Lund, B. Ramanathan, N. Mizushima, A. Iwasaki, Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398-1401 (2007).
64. M. J. Manuse, C. M. Briggs, G. D. Parks, Replication-independent activation of human plasmacytoid dendritic cells by the paramyxovirus SV5 Requires TLR7 and autophagy pathways. Virology 405, 383-389 (2010).
65. M. Dreux et al., Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe 12, 558-570 (2012).
66. E. E. To et al., Intranasal and epicutaneous administration of Toll-like receptor 7 (TLR7) agonists provides protection against influenza A virus-induced morbidity in mice. Sci Rep 9, 2366 (2019).
67. P. Xie, TRAF molecules in cell signaling and in human diseases. Journal of Molecular Signaling 8, 7 (2013).
68. H. Häcker, P.-H. Tseng, M. Karin, Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nature Reviews Immunology 11, 457-468 (2011).
69. H. Hacker et al., Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204-207 (2006).
70. G. Oganesyan et al., Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208-211 (2006).
71. S. Paz et al., A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response. Cell Res 21, 895-910 (2011).
72. Y. Huang et al., UXT-V1 facilitates the formation of MAVS antiviral signalosome on mitochondria. J Immunol 188, 358-366 (2012).
73. Y. M. Loo, M. Gale, Jr., Immune signaling by RIG-I-like receptors. Immunity 34, 680-692 (2011).
74. J. Maelfait, R. Beyaert, Emerging role of ubiquitination in antiviral RIG-I signaling. Microbiol Mol Biol Rev 76, 33-45 (2012).
75. T. Zhao et al., The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nat Immunol 8, 592-600 (2007).
76. W. Zeng, M. Xu, S. Liu, L. Sun, Z. J. Chen, Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol Cell 36, 315-325 (2009).
77. R. D. Molony et al., Aging impairs both primary and secondary RIG-I signaling for interferon induction in human monocytes. Sci Signal 10, (2017).
78. P. H. Tseng et al., Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 11, 70-75 (2010).
79. R. Ostuni, I. Zanoni, F. Granucci, Deciphering the complexity of Toll-like receptor signaling. Cell Mol Life Sci 67, 4109-4134 (2010).
80. T. Kondo, T. Kawai, S. Akira, Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol 33, 449-458 (2012).
81. T. Kawai, S. Akira, Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143, 1-20 (2008).
82. S. S. Kim et al., DOK3 is required for IFN-beta production by enabling TRAF3/TBK1 complex formation and IRF3 activation. J Immunol 193, 840-848 (2014).
83. W. Qian et al., The C-Terminal Effector Domain of Non-Structural Protein 1 of Influenza A Virus Blocks IFN-beta Production by Targeting TNF Receptor-Associated Factor 3. Front Immunol 8, 779 (2017).
84. E. Guven-Maiorov et al., TRAF3 signaling: Competitive binding and evolvability of adaptive viral molecular mimicry. Biochim Biophys Acta 1860, 2646-2655 (2016).
85. C. Klemm, Y. Boergeling, S. Ludwig, C. Ehrhardt, Immunomodulatory Nonstructural Proteins of Influenza A Viruses. Trends Microbiol 26, 624-636 (2018).
86. A. García-Sastre, Induction and evasion of type I interferon responses by influenza viruses. Virus Research 162, 12-18 (2011).
87. T. Yoshizumi et al., Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nat Commun 5, 4713 (2014).
88. O. Leymarie et al., Influenza virus protein PB1-F2 interacts with CALCOCO2 (NDP52) to modulate innate immune response. J Gen Virol 98, 1196-1208 (2017).
89. L. Bavagnoli et al., The novel influenza A virus protein PA-X and its naturally deleted variant show different enzymatic properties in comparison to the viral endonuclease PA. Nucleic Acids Res 43, 9405-9417 (2015).
90. D. A. Khaperskyy, S. Schmaling, J. Larkins-Ford, C. McCormick, M. M. Gaglia, Selective Degradation of Host RNA Polymerase II Transcripts by Influenza A Virus PA-X Host Shutoff Protein. PLoS Pathog 12, e1005427 (2016).
91. R. E. Rigby, H. M. Wise, N. Smith, P. Digard, J. Rehwinkel, PA-X antagonises MAVS-dependent accumulation of early type I interferon messenger RNAs during influenza A virus infection. Sci Rep 9, 7216 (2019).
92. WEIRONG WANG et al., RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimer structure and a small number of specific basic amino acids. RNA, 195-205 (1999).
93. A. Nogales, L. Martinez-Sobrido, D. J. Topham, M. L. DeDiego, Modulation of Innate Immune Responses by the Influenza A NS1 and PA-X Proteins. Viruses 10, (2018).
94. Li Y1, Yamakita Y, K. RM., Regulation of a nuclear export signal by an adjacent inhibitory sequence: The effector domain of the influenza virus NS1 protein. Proc Natl Acad Sci U S A. 28;95(9), 4864-4869. (1998).
95. J. Y. Min, R. M. Krug, The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2'-5' oligo (A) synthetase/RNase L pathway. Proc Natl Acad Sci U S A 103, 7100-7105 (2006).
96. J. Y. Min, S. Li, G. C. Sen, R. M. Krug, A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis. Virology 363, 236-243 (2007).
97. M. Mibayashi et al., Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol 81, 514-524 (2007).
98. R. Rajsbaum et al., Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog 8, e1003059 (2012).
99. M. U. Gack et al., Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5, 439-449 (2009).
100. D. L. Noah, K. Y. Twu, R. M. Krug, Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3′ end processing of cellular pre-mRNAS. Virology 307, 386-395 (2003).
101. M. Moriyama et al., The RNA- and TRIM25-Binding Domains of Influenza Virus NS1 Protein Are Essential for Suppression of NLRP3 Inflammasome-Mediated Interleukin-1β Secretion. Journal of Virology 90, 4105-4114 (2016).
102. G. Trinchieri, Type I interferon: friend or foe? J Exp Med 207, 2053-2063 (2010).
103. K.-R. Chen et al., TBK1-associated Protein in Endolysosomes (TAPE)/CC2D1A Is a Key Regulator Linking RIG-I-like Receptors to Antiviral Immunity. Journal of Biological Chemistry 287, 32216-32221 (2012).
104. C. H. Chang et al., TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator modulating the TLR3 and TLR4 signaling pathways. J Biol Chem 286, 7043-7051 (2011).
105. L. Basel-Vanagaite et al., The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. J Med Genet 43, 203-210 (2006).
106. M. C. Manzini et al., CC2D1A regulates human intellectual and social function as well as NF-kappaB signaling homeostasis. Cell Rep 8, 647-655 (2014).
107. M. Zamarbide, A. W. Oaks, H. L. Pond, J. S. Adelman, M. C. Manzini, Loss of the Intellectual Disability and Autism Gene Cc2d1a and Its Homolog Cc2d1b Differentially Affect Spatial Memory, Anxiety, and Hyperactivity. Front Genet 9, 65 (2018).
108. C. Y. Yang, T. H. Yu, W. L. Wen, P. Ling, K. S. Hsu, Conditional Deletion of CC2D1A Reduces Hippocampal Synaptic Plasticity and Impairs Cognitive Function through Rac1 Hyperactivation. J Neurosci, (2019).
109. M. Zhao, X. D. Li, Z. Chen, CC2D1A, a DM14 and C2 domain protein, activates NF-kappaB through the canonical pathway. J Biol Chem 285, 24372-24380 (2010).
110. Y. Usami et al., Regulation of CHMP4/ESCRT-III function in human immunodeficiency virus type 1 budding by CC2D1A. J Virol 86, 3746-3756 (2012).
111. K.-R. Chen, National Cheng Kung University, Taiwan (2016).
112. M.-C. Shih, National Cheng Kung University, Taiwan (2018).
113. B. A. Szretter KJ, Katz JM., Influenza: Propagation, Quantification, and Storage. Curr Protoc Microbiol, Chapter 15:Unit 15G.11 (2006).
114. C.-Y. Lin, National Cheng Kung University, Taiwan (2012).
115. K.-J. Lin, National Cheng Kung University, Taiwan (2014).
116. P. Xie, TRAF molecules in cell signaling and in human diseases. Molecular Signaling, 8:7 (2013).
117. K. A. Jenkins, A. Mansell, TIR-containing adaptors in Toll-like receptor signalling. Cytokine 49, 237-244 (2010).
118. T. Kaisho, S. Akira, Regulation of Dendritic Cell Function Through Toll-Like Receptors. (2003).
119. A. Pichlmair et al., RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314, 997-1001 (2006).
120. Li Deng et al., Activation of the IkB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain. Cell 03, 351–361, (2000).
121. D. Kobasa et al., Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445, 319-323 (2007).
122. P. S. Pillai et al., Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science 352, 463-466 (2016).
123. Yushen Du et al., Genome-wide identification of interferon-sensitive mutations enables influenza vaccine design. Science 359, 290–296 (2018).
校內:2024-07-17公開