簡易檢索 / 詳目顯示

研究生: 陳信彰
Chen, Hsin-Chang
論文名稱: 利用有機金屬氣相沉積法進行氮化鎵基材料及發光二極體之研究
Investigation of GaN-based material and light emitting diodes by MOCVD
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 79
中文關鍵詞: 有機金屬氣相沉積法非極性
外文關鍵詞: MOCVD, nonpolar
相關次數: 點閱:111下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在近二十年,發光二極體的發展有了很長足的進展。由於發光二極體的量子效率取決於內部量子效率和光取出率的乘積,因此我們的實驗首先針對光取出率的部分做改良,藉由在傳統的C面氮化鎵的發光二極體上製做電流阻擋結構來提昇其光取出率。在我們所設計的六個電流阻擋結構中,阻擋結構為菱形區域且均勻密度分佈者,在電流擴散以及光取出率上有著最佳的改善。在順向偏壓上,電壓相較於無電流阻擋結構者降低了1.5%;而在光取出率上則提昇了5%。而接著,由於傳統的C面氮化鎵會有所謂的量子侷限史托克效應,因此,我們改用非極性的A面氮化鎵來排除位於量子井中的極化電場。我們利用兩階段成長並改變其五三比的方式且同時利用單邊側向成長技術來改善A面氮化鎵之磊晶品質。而我們所得到最好的A面氮化鎵有著疊差為2.62*104 cm-1。除此之外,本論文會介紹利用光激發光頻譜的分析技術,可以用來判斷在不同成長參數下,對多重量子井的發光波長以及晶格品質的影響;並且在不同銦含量下的多重量子井中其銦聚集的程度。我們所得到最適合用來成長綠光量子井的參數其PL的峰值波長以及銦的含量分別為507.58奈米和23.8%。同時,我們也發現成長在單邊側向成長上的多重量子井相較於成長在不使用單邊側向成長上的多重量子井有著較佳的磊晶品質。由PL以及XRD的推算中,可得到其銦含量約為14~15.6%。

    The development of light emitting diodes has a significant breakthrough in the last two decades. Since the quantum efficiency of the LED is dominated by internal quantum efficiency (IQE) and light extraction efficiency (LEE), our experiment first started with improving the LEE by fabricating current blocking holes on the traditional c-plane LED. We find that among six different patterns of CBH, the rhombus-area and uniform-density CBH is the most effectively one in improving the current spreading ability and light extraction of LEDs. The forward voltage has a decrease about 1.5% compared with the reference. And the light output has an increase about 5%. Then since the c-plane GaN suffers from quantum confined Stark effect (QCSE), we then try to use a-plane GaN to eliminate the electric field inside the QWs in the next experiment. We change the V/III ratio through two step regrowth and use OSELOG growth technique to obtain good film quality. And our best a-plane GaN template has a basal stacking fault about 2.62*104 cm-1. In the last experiment, we discuss the effect of different growth parameters such as TMIn flow rate, temperature, NH3 flow rate and pressure on the MQWs structure on the as-grown a-plane GaN. And the one with green light have PL main peak and estimated In composition 507.58 nm and 23.8%, repectively. And it also shows that MQW structure grown on OSELOG GaN indeed has better film quality and the calculated In composition is about 14~15.6%.

    Contents Abstract (in Chinese)………………………………………………………I Abstract (in English) ……………………………………………………II Acknowledgements……………………………………………………………………IV Contents…………………………………………………………………………………………V Table captions…………………………………………………………………………VII Figure captions………………………………………………………………………VIII Chapter 1 Introduction……………………………………………………1 1-1 Review of GaN-based LEDs……………………………………1 1-1-1Properties of Wurzite GaN………………………………1 1-1-2 Spotaneous and piezoelectric polarizations……………………………………………………………………………2 1-2 Nonpolar GaN growth…………………………………………………3 1-2-1 Advantages of nonpolar GaN…………………………3 1-2-2 Challenges to grow high quality nonpolar GaN………………………………………………………………………………………………………4 1-3 Motivation…………………………………………………………………………5 Chapter 2 MOCVD system and Experimental instruments…………………………………………………………………………………11 2-1 MOCVD………………………………………………………………………………………11 2-2 Electron microscopes………………………………………………15 2-2-1 Scanning electron microscope (SEM)……16 2-2-2 Cathodoluminescence (CL)………………………………16 2-3 Atomic force microscopes (AFM)……………………17 2-4 X-ray diffraction (XRD)………………………………………18 2-5 Photoluminescence (PL)…………………………………………19 2-6 Furnace…………………………………………………………………………………20 Chapter 3 Current spreading structure on C-plane LEDs……………………………………………………………………………………………………26 3-1 Motivation…………………………………………………………………………26 3-2 LED process and the design of the current blocking holes (CBH)…………………………………………………………………………………27 3-3 Results and discussion…………………………………………28 Chapter 4 Improvement of crystal quality in a-plane GaN by One-side-seeded epitaxial lateral overgrowth (OSELOG)………37 4-1 Methods to reduce defects of nonpolar GaN………………………………………………………………………………………………………37 4-2 Experimental procedure…………………………………………38 4-3 Results and discussions………………………………………39 Chapter 5 InGaN/GaN MQWs grown on as-grown & OSELOG a-plane GaN………………………………………………………………………………………………………55 5-1 MQW on as-growth GaN with different growth parameter………………………………………………………………………………………55 5-2 Quantitative analysis by PL……………………………57 5-3 MQW on GaN grown by OSELOG………………………………59 Chapter 6 Conclusion and future work………………71 6-1 Conclusion…………………………………………………………………………71 6-2 Future work………………………………………………………………………73 References……………………………………………………………………………………74

    [1] H. T. Grahn, “Polarization properties of nonpolar GaN films and (In,Ga)N/GaN multiple quantum wells,” phys. stat. sol. (b) 241, No. 12, 2795–2801 (2004)
    [2] Hisashi Masui, Shuji Nakamura, Steven P. DenBaars, and Umesh K. Mishra, “Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges,” IEEE Transactions on electron devices, Vol. 57, No. 1 (2010)
    [3] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Threading dislocation reduction via laterally overgrown nonpolar (11-20) a-plane GaN,” Applied Physics Letters, Vol. 81, No. 7 (2002)
    [4] William D. Callister, Materials Science and Engineering: An Introduction.
    [5] J.-M. Jancua) and F. Bassani, “Transferable tight-binding parametrization for the group-III nitrides,” Applied Physics Letters, Vol 81, No. 25 (2002)
    [6] Tapas Das, Sanjib Kabi, and Dipankar Biswas, “Calculations for the band lineup of strained InxGa1−xN/GaN quantum wells : Effects of strain on the band offsets,” JOURNAL OF APPLIED PHYSICS 105, 046101 (2009)
    [7] Renchun Tao, Tongjun Yu*, Chuanyu Jia, Zhizhong Chen, Zhixin Qin, and Guoyi Zhang, “Strain effect on polarized optical properties of c-plane GaN and m-plane GaN,” Phys. Status Solidi A 206, No. 2, 206–210 (2009)
    [8] E. Fred Schubert, Light-Emitting Diodes.
    [9] Vincenzo Fiorentini, Fabio Bernardini, and Oliver Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy Heterostructures,” Applied Physics Letters, Vol 80, No. 7 (2002)
    [10] Hisashi Masui, Junichi Sonoda, Nathan Pfaff, Ingrid Koslow,“Quantum-confined Stark effect on photoluminescence andvelectroluminescence characteristics of InGaN-based light-emitting diodes,” J. Phys. D: Appl. Phys. 41, 165105 (2008)
    [11] Yuji Kawashima, Kazuma Murakami, Yuki Abe, Narihito Okada, and Kazuyuki Tadatomo, “Growth mechanism of nonpolar m-plane GaN on maskless patterned a-plane sapphire substrate,” Phys. Status Solidi C 7, No. 7–8, 2066–2068 (2010)
    [12] Ashleigh R. Borges†, Marilise Hyacinth‡, Michelle Lum†, Clayton M. Dingle, “Self-assembled thermoreversible gels of nonpolar liquids by racemic propargylic alcohols with fluorinated and nonfluorinated aromatic rings,” Langmuir, 24 7421-7431 (2008)
    [13] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, “Electronic
    band structure of wurtzite GaN under biaxial strain in the M plane investigated with photoreflectance spectroscopy,” Phys. Rev. B, Condens. Matter, vol. 65, no. 7, p. 075202 (2002)
    [14] K. Kojima, H. Kamon, M. Funato, and Y. Kawakami, “Theoretical investigations
    on anisotropic optical properties in semipolar and nonpolar InGaN quantum wells,” Phys. Stat. Sol. (C), vol. 5, no. 9, pp. 3038–3041(2008)
    [15] Yang Zhang, Fawang Yan, “High-brightness GaN-based blue LEDs grown on a wet-patterned sapphire substrate,” Proc. of SPIE Vol. 6841, 68410T, (2007)
    [16] Jeng-Jie Huang, Kun-Ching Shen, Wen-Yu Shiao, “Improved a-plane GaN quality grown with flow modulation epitaxy and epitaxial lateral overgrowth on r-plane sapphire substrate,” Applied Physics Letters 92, 231902 (2008)
    [17] Akihiko Ishibashi, Isao Kidoguchi, Gaku Sugahara, “High-quality GaN films obtained by air-bridged lateral epitaxial growth,” Journal of Crystal Growth, 221 338-344 (2000)
    [18] Huei-Min Huang, Shih-Chun Ling, Wei-Wen Chan, “Optical Properties of A-Plane InGaN/GaN Multiple Quantum Wells Grown on Nanorod Lateral Overgrowth Templates,” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 47, NO. 8 (2011)
    [19] Kwang-Choong Kim, Mathew C. Schmidt,a_ Feng Wu, “Low extended defect density nonpolar m-plane GaN by sidewall lateral epitaxial overgrowth,” APPLIED PHYSICS LETTERS 93, 142108 (2008)
    [20] Daisuke Iida, Motoaki Iwaya, Satoshi Kamiyama, “One-sidewall-seeded epitaxial lateral overgrowth of a-plane GaN by metal organic vapor-phase epitaxy,” Journal of Crystal Growth 311 2887–2890 (2009)
    [21] S. Nakamura, T. Mokai and M. Senoh, “High-power GaN p-n junction blue light-emitting diodes,” Jpn. J. Appl. Phys., Vol. 30, page(s): 1998-2002, (1991).
    [22] S. Nakamura, M. Senoh, S. Magahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiooku, and Y. Sugimoto, “InGaN multi-quantum-well structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys., Vol. 35, page(s): L217-L220, (1996).
    [23] S. Nakamura, M. Senoh and T. Mokai, “P-GaN/n-InGaN/n-GaN double heterostructure blue light-emitting diodes,” Jpn. J. Appl. Phys., Vol. 32, page(s):L8-L11, (1993).
    [24] S. Nakamura, T. Mokai and M. Senoh, “High-brightness InGaN/AlGaN double heterostructure blue-green light-emitting diodes,” Jpn. J. Appl. Phys., Vol.76, page(s): 8189-8183, (1994).
    [25] S. Nakamura, T. Mokai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double heterostructure blue light-emitting diodes,” Appl. Phys. Lett., Vol. 64, page(s): 1687-1689, (1994).
    [26] Ko-Tao Lee,a,c Yeeu-Chang Lee,b and Jeng-Yang Chang, “Characterization of Gallium Nitride Grown on Patterned Sapphire Substrate with Shallow U-Shaped Stripe Grooves,” Journal of The Electrochemical Society, 155 (9) H673-H676 (2008)
    [27] V. Rajagopal Reddy, “Study of the electrical, structural and surface morphological characteristics of Pt/Re/Au ohmic contacts on p-type GaN,” Materials Chemistry and Physics 93 286–290 (2005)
    [28] D.W. Kim, Y.J. Sung, J.W. Park, G.Y. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN,” Thin Solid Films 398 –399 87–92 (2001)
    [29] Kalyan Biswas, Shiguo Liu, Xiaowu Zhang, TC Chai, Ser-Choong Chong, “Structural Design for Cu/Low-K Larger Die Flip Chip Package” Electronics Packaging Technology Conference (2006)
    [30] Chun-Fu Tsai, Yan-Kuin Su, “Improvement in the Light Output Power of GaN-Based Light-Emitting Diodes by Natural-Cluster Silicon
    Dioxide Nanoparticles as the Current-Blocking Layer,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 21, NO. 14 (2009)
    [31] Seok-Hyo Yun, Yong-Ho Ra, Young-Min Lee, “Growth of hexagonal and cubic InN nanowires using MOCVD with different growth temperatures,” Journal of Crystal Growth 312 2201–2205 (2010)
    [32] Ö. Tuna*,1, H. Behmenburg2, C. Giesen, “Dependence of InN properties on
    MOCVD growth parameters,” P hys. Status Solidi C 8, No. 7–8, 2044–2046 (2011)
    [33] Theodora C. Xenidou,a,z Nathalie Prud’homme,b,c Constantin Vahlas, “Reaction and Transport Interplay in Al MOCVD Investigated
    Through Experiments and Computational Fluid Dynamic
    Analysis,” Journal of The Electrochemical Society, 157 (12) D633-D6419 (2010)
    [34] S. A. Safvi, J. M. Redwing, M. A. Tischler, and T. F. Kuech, “GaN Growth by Metallorganic Vapor Phase Epitaxy”, J. Electrochem. Soc., Vol.144, page(s): 1789, (1997).
    [35] J. R. Creighton, G. T. Wang, W. G. Breiland, and M. E. Coltrin, “Nature of the parasitic chemistry during AlGaInN OMVPE”, J. Cryst. Growth, Vol. 261, page(s): 204-206, (2004).
    [36] T. G. Mihopoulos, Reaction and Transport Processes in OMCVD: Selective and Group III-Nitride Growth. Ph.D thesis, Massachusetts Institute of technology, (1999).
    [37] R. P. Parikh, and R. A. Adomaitis, “An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system”, J. Cryst. Growth, Vol. 286, page(s): 259-278, (2006).
    [38] E. Mesic, M. Mukinovic, and G. Brenner, “Numerical study of AlGaN growth by MOVPE in an AIX200 RF horizontal reactor”, Comp. Mater. Sci., Vol. 31, page(s): 42-56, (2004).
    [39] A. Hirako, K. Kusakabe, and K. Ohkawa, “Modeling of Reaction Pathways of GaN Growth by Metalorganic Vapor-Phase Epitaxy Using TMGa/NH3/H2 System: A Computational Fluid Dynamics Simulation Study”, Jpn. J. Appl. Phys., Vol. 44, page(s): 874-879, (2005).
    [40] J. R. Creighton, G. T. Wang, and M. E. Coltrin, “Fundamental chemistry and modeling of group-III nitride MOVPE”, J. Cryst. Growth, Vol. 298, page(s): 2-7, (2007).
    [41] D. F. Davidson, K. Khose-Hoeinghaus, A. Y. Chang, and R. K. Hanson, Int. J. Chem. Kinet., Vol. 22, page(s): 513-515, (1990).
    [42] R. P. Parikh, and R. A. Adomaitis, “Nitrogen precursors in metalorganic vapor phase epitaxy of (Al,Ga)N”, J. Cryst. Growth, Vol.156, page(s): 140-144, (1995).
    [43] W. D. Monnery, K. A. Hawboldt, A. E. Pollock, and W. Y. Svrcek, Ind. Eng. Chem. Res., Vol. 40, page(s): 144-147, (2001).
    [44] V. S. Ban, “Mass Spectrometric Studies of Vapor-Phase Crystal Growth”, J. Electrochem. Soc., Vol. 119, page(s): 1473-1478, (1972).
    [45] S. S. Liu, D. A. Stevenson, “Growth Kinetics and Catalytic Effects in the Vapor Phase Epitaxy of Gallium Nitride”, J. Electrochem. Soc., Vol.125, page(s): 1161-1169, (1978).
    [46] M. G. Jacko, and S. J. W. Proce, Can. J. Chem., Vol.41, page(s): 1560-1565, (1962).
    [47] S. P. DenBaars, B. Y. Maa, P. D. Dapkus, A. D. Danner, and H. C. Lee, “Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD”, J. Cryst. Growth, Vol. 77, page(s): 188-193, (1986).
    [48] A. Thon, and T. F. Kuech, “High temperature adduct formation of trimethylgallium and ammonia”, Appl. Phys. Lett., Vol.69, page(s): 55-57, (1996).
    [49] J. B. Williams, The Lewis Acid-Base Concepts: An Overview, Wiley, New York, (1980).
    [50] P. W. Atkins, Physical Chemistry, seventh ed., Freeman, New York, (2002).
    [51] Y.D. Jhou, Y.K. Su, S.J. Chang “Epitaxial Growth and Device Fabrication of Nitride Based Photodetectors”, (2008).
    [52] C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C. H. Liu and U. H. Liaw, “High Brightness Green Light Emitting Diodes With Charge Asymmetric Resonance Tunneling Structure” IEEE Electron. Dev. Lett., Vol. 23, page(s): 130-132, (2002).
    [53] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai C. H. Kuo, C. H. Chen, J. K. Sheu and J. F. Chen, “InGaN/GaN tunnel-injection blue light-emitting diodes” IEEE Tran. Electron. Dev., Vol. 49, page(s): 1093-1095, (2002).

    下載圖示 校內:2014-09-13公開
    校外:2014-09-13公開
    QR CODE