| 研究生: |
林語軒 Lin, Yu-Hsuan |
|---|---|
| 論文名稱: |
藉由奈米膜在濃度梯度下產生能量之研究 Power Generation from Salinity Gradient through Nanopores Membrane |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 再生能源 、鹽分梯度能源 、吉布斯自由能 、可逆電透析 、奈米膜 、離子交換膜 、電雙層重疊 、能源轉換 |
| 外文關鍵詞: | Renewable energy, Salinity gradient power, Gibbs free energy, Reverse electrodialysis, Nanopores, Ion-exchange membrane, Overlapped electric double layers, Energy conversion |
| 相關次數: | 點閱:136 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來能源短缺的問題一直不斷的衍生出來,許多學者積極尋找可替代的能源,鹽分梯度能源是一種乾淨無汙染的可持續性再生能源,它存在淡水與海水的交界處,利用濃度的不同可將吉布斯自由能轉換成電能,是一種新穎的能量轉換裝置,目前鹽類梯度能源研究的方式以壓力延緩逆滲透與可逆電透析兩種為主。
本研究利用可逆電透析的原理來進行發電,並採用市面上可購得的奈米膜(原先用於生醫方面的薄膜)取代原先的離子交換膜,因為奈米維度下,電雙層重疊效應會更加明顯,可比原先的離子交換膜有更好的功率及轉換效率,而此研究我們選擇了Polycarbonate 以及 Aluminum Oxides membrane 分別為陽離子選擇性及陰離子選擇性的薄膜,在KCl,NaCl,LiCl 三種電解液不同濃度下(0.1mM|1mM , 3mM , 10mM , 30mM , 100mM)進行研究,分別探討了擴散電壓,擴散電流,電流-電壓曲線,輸出功率,離子遷移數,轉換效率,最後是功率密度,從我們的研究裡可看的出來兩種膜的性質差異大,所對應的結果也不大相同,以Polycarbonate membrane 來說,其最大輸出功率可達3.47nW,而Aluminum Oxides membrane最大輸出功率則是346nW,這個結果已可供給一些微小生醫設備運作,且在未來具有潛力成為新一代的能源裝置。
Recently, the energy crisis has been arisen in the world. Many researchers are looking for alternative energy. The salinity gradient power is developed that completely renewable and sustainable in recent decades. The salinity power or the energy represented by the salinity concentration gradient between fresh water and seawater could become the next generation energy. The novel energy conversion device can convert Gibbs free energy into electricity. There are two technologies of converting energy: one is pressure retarded osmosis (PRO) and another is reverse electrodialysis (RED).
In this research, we use the principle of reverse electrodialysis for generating electricity, and replace the ion exchange membrane with nanopore membrane. Because in nanopore membrane the overlapped electric double layers become more obvious, therefore, the efficiency of power generation and energy conversion will be higher than ion exchange membrane. We choose the polycarbonate membrane as cation selectivity and aluminum oxides membrane as anion selectivity that can be demonstrated for energy conversion. Diffusion potential, diffusion current, I-V curve characteristics, power generation ,transference number ,energy conversion efficiency and power density were discussed in three different electrolyte( KCl, NaCl, LiCl ) and compared with different concentration gradient (0.1mM | 1mM, 3mM, 10mM, 30mM, 100mM).
The properties between the polycarbonate membrane and aluminum oxides membrane are very different. Thus, the maximum output power generation produced by polycarbonate membrane can obtain 3.47 nW, and aluminum oxide membrane can obtain 346 nW. This results can provide some biomedical microdevices to operate and can become the next generation of energy device.
Reference
[1] Alex Morales, ”Wind Power Market Rose to 41 Gigawatts in 2011,Led by China”,2012,February 07
[2] Lars Kroldrup,”Gains in Global Wind Capacity Reported Green Inc.”,2010,
February 15
[3]“ Renewables 2011: Global Status Report”,REN21,2011
[4] Alyssa Kagel, Diana Bates, Karl Gawell” A Guide to Geothermal Energy and the Environment” Geothermal Energy Association
[5] Douglas, C. A.; Harrison, G. P.; Chick, J. P. “Life cycle assessment of the Seagen marine current turbine. Proceedings of the Institution of Mechanical Engineers”, Part M: Journal of Engineering for the Maritime Environment. 2008,222(1):1–12
[6]《Solar cell efficiency tables(version 37)》Progress in Photovoltaics: Research and Applications Volume 19, Issue 1, pages 84–92, January 2011
[7] Weinstein, J. N. ; Leitz, F. B. “Electric Power from Differences in Salinity: The Dialytic Battery.” Science 1976, 191(4227), 557-559
[8] EIA. International Energy Outlook 2010; U. S. Department of Energy: Washington DC, 2010.
[9] J. W .Post, J. Veerman, H. V.M. Hamelers, G. J. W. Euverink, S. J. Metz, K. Nymeijer, C. J. N. Buisman, “Salinity-gradient power: evaluation of pressure retarded osmosis and reverse electrodialysis “J. Membr. Sci. 2007, 288, 218.
[10] J. Xu, F. J. Sigworth, D. A LaVan, “Synthetic Protocells to Mimic and Test Cell Function”Adv. Mater. 2010, 22, 120.
[11] D. A Veermaas, M. Saakes and K. Nijmeijer,” Doubled Power Density from Salinity Gradients at Reduced Intermembrane Distance” Environ. Sci. Technol. 2011, 45, 7089-7095.
[12] J. Veerman, M. Saakes, S. Metz and G. Harmsen, “Reverse electrodialysis : evaluation of suitable electrode systems”J. Appl. Electrochem, 2010, 40, 1461-1474.
[13] N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman, L. A. Hoover, Y. C. Kim and M. Elimelech, “Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients”Environ. Sci. Technol.,2011,45,4360-4369
[14] Thorsen, T. Holt, T.”The potential for power production from salinity gradients by pressure retarded osmosis” J. Membr. Sci. 2009, 335(1-2), 103-110.
[15] Post, J. W.; Veerman, J.; Hamelers, H. V. M.; Euverink, G. J. W.;Metz, S. J.; Nijmeijer, K.; Buisman, C. J. N. “Salinity-gradient power:Evaluation of pressure-retarded osmosis and reverse electrodialysis.”J. Membr. Sci. 2007, 288 (1_2), 218–230.
[16] Veerman, J.; Saakes, M.; Metz, S. J.; Harmsen, G. J. “Reverse electrodialysis: A validated process model for design and optimization.”Chem. Eng. J. 2011, 166 (1), 256–268
[17] K.L Lee ,R.W.Baker, H.K. Lonsdale, “Membranes for power-generation by pressure-retarded osmosis”,J.Membr.Sci.8(2) (1981) 141-171
[18] Pattle RE. , “Production of electric power by mixing fresh and salt water in the hydroelectric pile. ”, Nature, 1954,174:660-660
[19] Veerman J, Saakes M, Metz SJ, Harmsen GJ (2009a) “Reverse electrodialysis : performance of a stack with 50 cells on the mixing of sea and river water. J Membr Sci 327:136-144
[20] Post, J. W.; Goeting, C. H.; Valk, J.; Goinga, S.; Veerman, J.;Hack, P. J. F. M. “Towards implementation of reverse electrodialysis forpower generation from salinity gradients.” Desalination and Water Treatment 2010,16, 182–193.
[21] Veerman, J.; Jong, R. M. D.; Saakes, M.; Metz, S. J.; Harmsen,G. J. Reverse electrodialysis: Comparison of six commercial membranepairs on the thermodynamic efficiency and power density. J. Membr. Sci.2009, 343 (1_2), 7–15.
[22] Post, J. W.; Hamelers, H. V. M.; Buisman, C. J. N. “Energy Recovery from Controlled Mixing Salt and Fresh Water with a Reverse Electrodialysis System.” Environ. Sci. Technol. 2008, 42 (15), 5785–5790.
[23] Eijkel JCT, Berg Avd, “Nanofluidics: what is it and what can we expect from it?” Microfluidics and Nanofluidics 1: 249-267, 2005.
[24] Ventra D, Evoy MS, Heflin JR “Introduction to Nanoscale Science and Technology, Nanostructure Science and Technology.” (Kluwer Academic, Boston).2004
[25] Han J, “Introduction to Nanoscale Science and Technology”, edited by M. Di Ventra, S. Evoy, and J. R. Heflin. (Kluwer Academic, Boston), 2004.
[26] John R. Heckenlively, Geoffrey B. Arden “Principles and Practice of Clinical Electrophysiology of Vision” A Bradford Book; second edition (April 7, 2006)
[27] Wei Guo, Liuxuan Cao,“Energy Harvesting with Single-ion-selective Nanopores ”, Adv. Funct. Mater.2010,20,1339-1344
[28] Linuxuan Cao,Wei Guo, “Towards understanding the nanofluidic reverse electrodialysis system”, Energy&Environmental Science,2011,4.2259
[29] Dong-Kwon Kim, Chuanhua Duan, Yu-Feng Chen, Arun Majumdar “Power Generation from concentration gradient by reverse electrodialysis in Ion-selective nanochannels” Microfluid. Nanofluid.,vol. 9,pp.1215-1224,2010.
[30] Juwan Kim, Sung Jin Kim, Dong-Kwon Kim “Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores” Energy 51(2013)413-421
[31] A.J.Bard, L.R.Faulkner, Electrochemical methods Fundamental and Applications,
New York : John Wiley,2001
[32] A. Skoog, F. James Holler, Stanly R. Crouch
[33] J. O’M. Bockris and A. K. Reddy, op.cit. , Vol. 1 Chap. 4
[34] D. A. MacInnes, op. cit. , Chap. 4
[35] D. A. MacInnes, “The Principles of Electrochemistry,” Dover, New York, 1961
P. 85
[36] J.J. Lingane, “Electroanalytical Chemistry,” 2nd ed. , Wiley-Interscience, New York, 1958, Chap. 3
[37] Pu Q., Yun J., Temkin H.,Liu S. “Ion-Enrichment and Ion-Depletion Effect of Nanochannel Structyres”, Nano letters 1099-1103 2004
[38] Schoch R. B. ,Han J., Renaud P.”Transport phenomena in nanofluidics”, Reviews of Modern Physics 839-883 2008
[39] Hunter RJ, “Zeta Poteatial in Colloid Science: Principles and Applications. Academic press”, New York 8: 386, 1981
[40] Yang C, Li DQ, Masliyah JH, “Modeling forced liquid convection in rectangular microchannels with electrokinetic effects.” International Journal of Heat and Mass Transfer 41:4229-4249, 1998
[41] Fair JC, Osterle JF(1971)“Reverse electrodialysis in charged capillary membranes.” J Chem Phys 54:3307-3316
[42] J. Veerman., M. Saakes., S. J. Metz. G. J. Harmsen. “Reverse electrodialysis : evaluation of suitable electrode systems” J Appl Electrochem (2010) 40: 1461 – 1474
[43] Z. Wang, Y.-K. Su, H.-L. Li ,”AFM study of gold nanowire array electrodeposited within anodic aluminum oxide template”, Appl. Phys. A74, 563(2002)
[44] P.L. Chen, C.T. Kuo , T.G. Tsai, B.W. Wu, C.C. Hsu and F.M. Pan “Self-organized Titanium Oxide Nanodot Arrays by Electrochemical Anodization”, Appl. Phys. Lett., 82 (2003) 2796-2798.