| 研究生: |
李彥良 Li, Yen-Liang |
|---|---|
| 論文名稱: |
不同填充物對保護膠片耐熱性之研究 Heat Resistance of Cover Layer with Different Fillers |
| 指導教授: |
趙隆山
Zhao, San-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 保護膠片 、氫氧化鋁 、氧化鋁 |
| 外文關鍵詞: | Cover layer, Aluminium hydroxide, Aluminium oxide |
| 相關次數: | 點閱:111 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
主軸是利用添加不同種類之填充物於環氧樹脂膠體中,首先主要是確認最佳研磨參數,經數次實驗再現及利用儀器重覆觀察後得到當以研磨轉速1200 rpm,時間為40 min之研磨效率最佳,粒徑由原本未研磨前2~4 um降至研磨後500 nm左右,並以此研磨後之填充物進一步製備出含有不同填充物之保護膠片(coverlayer)複合材料,深度探討不同填充物對於保護膠片(coverlayer) 之物性影響。
由實驗結果得知,當filler由氫氧化鋁改為氧化鋁時,其保護膠片與銅箔接合強度約由0.6 kg/cm提昇至0.8 Kg/cm、爆板測試溫度於放置室溫24hr時由260℃提昇至270℃,耐熱性提昇;填膠性測試於細線路均有正面的提昇;再由DSC測試結果可知,其玻璃轉移溫度約由110℃提昇至180℃左右。綜合以上結果,當使用的filler為氧化鋁時,其保護膠片之各項特性表現比 filler為氫氧化鋁時對產品特性能力有一定程度的提昇。
This research makes use of adding different kinds of fillers into epoxy, the first is to confirm optimum milling parameters, through a couple of experiments to reproduce and by using instruments repeatedly to check, it is learnt of the optimum of 1200rpm, 40 min of milling and the filler diameter is reduced to 500nm after milled from 2~4um before milled. Correspondingly further produce cover layer with different fillers to study on that different fillers influence the mechanical characteristics of cover layer along with sorts of analysis.
In accordance with results of experiments, while filler has been used by aluminium oxide, it is found that the strength to peel is upgraded to around 0.8Kg/cm from 0.6Kg/cm and the specimen with enhancement of heat resistance which stays 24 hours at ambient temperature still can pass 270℃ heat resistance test without failure, instead of 260℃. Meanwhile, adhesive fill-in test on fine circuits also is upgraded positively, furthermore, per DSC test results, the glass transition temperature (Tg) of cover layer is about 180℃ improved from 110℃. To sum up, while the filler is aluminium oxide, each characteristic of cover layer performs better than the one with aluminium hydroxide used.
[1] 徐國財、張立德,“奈米複合材料”,台北,五南圖書出版股份有限公司(2004年,1月)。
[2] 賴耿陽,“環氧樹脂應用實務”,復漢出版社(1999年,10月)。
[3] 李廣宇、吉利,“環氧膠黏劑與應用技術”,北京,化學工業出版社(2007年,7月)。
[4] Ramos, V. D., Helson, M. C., Vera, L.P.S., Regina, S.V.N., “Modification of epoxy resin: a comparison of different types of lastomer”, Polymer Testing, 24, 387-394 (2005).
[5] Kinloch, A. J., “Structure Adhesives: Developments in Resins and Primers”, Composites Science and Technology, 29, 153-155 (1987).
[6] Kimb, S. C., Yuna, N. G., Wona, Y. G., “Toughening of carbon fiber/epoxy composite by inserting polysulfone film to form morphology spectrum”, Polymer, 45, 6953–6958 (2004).
[7] Thomas, S., Francis, B., Poel, G. V., Posada, F., Groeninckx, G., Rao, V. L., Ramaswamy, R., “Cure kinetics and morphology of blends of epoxy resin with poly(ether ether ketone) containing pendant tertiary butyl groups”, Polymer, 44, 3687–3699 (2003).
[8] Richard, D. W., Malhotra, Vivak M., “Rupture of Nanoparticle Agglomerates and Formulation of Al2O3-Epoxy Nanocomposites Using Ultrasonic Cavitation Approach: Effects on the Structural and Mechanical Properties”, Polymer Engineering and Science, 46, 426-430(2006).
[9] Seo, K. S., Kim, D. S., “Curing Behavior and Structure of an Epoxy/Clay Nanocomposite System”, Polymer Engineering and Science, 46, 1318-1325(2006).
[10] 張玉軍、張傳儒,“結構陶瓷材料及其應用”,北京,化學工業出版社(材料科學與工程出版中心)。
[11] 許榮木,“奈米粉體改質、分散、流變與奈米複材製備之探討”,工業材料雜誌,第227期,100~111頁(2005年,11月)。
[12] 高濂、孫靜、劉楊橋,“奈米粉體的分散與表面改性”,台北,五南圖書出版股份有限公司(2005年,5月)。
[13] 邱碧秀,“電子陶瓷材料”,台北,財團法人徐氏文教基金會
(2001年,8月)。
[14] Lu, S., Zhang, H., Zhao, C., Wang, X., “New Epoxy/Silica-Titania Hybrid Materials Prepared by the Sol–Gel Process”, Journal of Applied Polymer Science, 101, 1075–1081(2006).
[15] Qi, L., Lee, B., Samuels, W. D., Exarhos, G. J., Parler, S. G.,“Three-Phase Percolative Silver–BaTiO3–Epoxy Nanocomposites with High Dielectric Constants”, Journal of Applied Polymer Science, 102, 967–971 (2006).
[16] Naous, W., Yu, X.Y., Zhang, Q.X., Naito, K., Kagaea, Y., “Morphology, Tensile Properties, and Fracture Toughness of Epoxy/Al2O3 Nanocomposites”, Journal of Polymer Science: Part B: Polymer Physics, 44, 1466–1473 (2006).
[17] Taylor, A. C., Johnsen, B. B., Kinloch, A. J., Mohammed, R. D., Sprenger, S., “ Toughening mechanisms of nanoparticle-modified epoxy polymers”, Polymer , 48, 530-541 (2007).
[18] Ragosta, G., Abbate, M., Musto, P., Mascia G. Scarinzi, L., “Epoxy-silica particulate nanocomposites: Chemical interactions, reinforcement and fracture toughness”, Polymer, 46, 10506–10516 (2005).
[19] Singh, R. P., Zunjarrao, S. C., “Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles”, Composites Science and Technology, 66, 2296–2305(2006).
[20] Huang, K. S., Nien, Y. H., Chen, J. S., Shieh, T. R., Chen, J.W.,“Synthesis and Properties of Epoxy/TiO2 Composite Materials”, Polymer Composites, 27, 195–200 (2006).
[21] Bondioli, F., Cannillo, V., E. Fabbri, M. Messori, “Epoxy-Silica Nanocomposites: Preparation, Experimental Characterization, and Modeling”, Journal of Applied Polymer Science, 97, 2382–2386 (2005).
[22] Mariatti, M., Tee, D. I., Azizan, A., See, C.H., Chong, K.F., “Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites”, Composites Science and Technology, 67, 2584–2591 (2007).
[23] Ma, P. C., Kim, J. K., Tang, B. Z., “Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites”, Composites Science and Technology, 67, 2965–2972 (2007).
[24] Ye, M., Shen, J., Huang, W., Wu, L., Hu, Y., “The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites”, Composites Science and Technology, 67, 3041-3050, (2007)
[25] 黃紘筠,“前導物為gibbsite的κ-→α-Al2O3相轉換晶徑變化與粒體發育現象”,國立成功大學資源工程研究所碩士論文(2004年,7月)