研究生: |
張騰元 Chang, Teng-Yuan |
---|---|
論文名稱: |
MPS及SPS自組裝分子膜在Au(111)電極上的吸附及其對電化學
鍍銅效應的研究 Self-Assembly Monolayer of MPS and SPS adsorbed on Au(111) Surface and Their Effect on the Electrochemical Deposition of Copper |
指導教授: |
李玉郎
Lee, Yuh-Lang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 95 |
中文關鍵詞: | 循環伏安法 、掃瞄式穿遂電子顯微術 、電化學鍍銅 、自組裝分子薄膜 |
外文關鍵詞: | Self-assembly monolayer, electrochemical deposition of copper, cyclic voltammetry, scanning tunneling microscopy |
相關次數: | 點閱:103 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
I. 對於MPS及SPS分子自組裝於金 (111) 上所形成的單分子層結構的探討
本研究藉由即時掃瞄式穿隧電子顯微術(in-situ STM)以及循環伏安法(CV)來分析單分子在電極表面吸附行為,於電化學系統下, mercaptopropylsulfonic acid (MPS)及bis(3-sulfopropyl)-disulfide (SPS) 以分子自組裝方式吸附於金(111)的表面上時,可即時記錄分子吸附過程,同時可由分子圖像分析分子吸附方式。
首先,我們利用循環伏安法(cyclic voltammetry,CV) 檢測所使用之金(111)表面規則度及清潔程度,CV之靈敏度可用以觀測金(111)在0.1 M硫酸中所呈現特徵鋒。STM亦可成功觀測到於負電位時金(111)所具有的獨特的魚骨狀的重排結構,由高解析的STM影像我們可以觀察到重排的金(111)表面上的原子排列方式為fcc,hcp,以及原子排列介於fcc和hcp之間的過渡態。
由CV研究中我們將可先觀測出分子吸附的穩定電位及分子所發生之電化學行為,結果得知 MPS在金(111)電極電位低於0.05 V時,分子會還原脫附離開電極表面,而當電位高於0.11 V後MPS會氧化吸附於電極表面,CV結果顯示出MPS穩定吸附於掃描電位0.11至0.85 V區間,金電極在電位高於1.10 V產生表面極化現象,導致溶液中水分子氧化及電極本身氧化,此行為將導致吸附分子的脫附行為。
上述CV結果中發現STM研究過程中,電極電位往正電位方向調控時,電極表面之重排特徵消失,同時呈現許多大小不一的凹陷(Defects)表面,溶液中的陰離子會因電極電位控制不同,致使伴隨MPS分子同時吸附於電極表面,導致規則MPS未能以規則吸附結構於電極表面被觀測出,當電位在高於0.85 V後,MPS分子規則吸附於金電極表面,至+ 1.10 V之後隨電極表面氧化而消失。In-situ STM顯示當電位位於0.85 ~ 1.10 V間MPS有規則吸附結構,其吸附結構為(43 × 7)及(27 × 6)。
相同地,SPS在金(111)上的吸附類似於MPS的情況,結果顯示SPS在電位高於0.85 V 至 1.10 V有規則吸附結構存在於金(111)電極表面,因分子排列方式與覆蓋度的差異會形成相轉換改變,根據高解像STM觀察及CV結果中可知,在電位高於0.85 V時,表面分子吸附量較低,SPS平躺於金(111)表面上,形成條紋狀的規則結構,三種結構分別為(63 × 23)R30°、(10 × 19)及(63 × 31)。而當電位達1.05 V時,由於溶液中的SPS吸附於電極表面,導致條紋狀的吸附結構轉變為較為緊密的排列,分別為(6 × 37)、(33 × 37)以及(7 × 27)。
II. 研究MPS及SPS吸附層對於電化學鍍銅的影響
藉由即時觀測掃瞄式穿遂電子顯微術(in-situ STM)以及循環伏安法(CV)來分析:電化學鍍銅於MPS及SPS修飾後的金(111)電極時所產成的電化學行為及表面的銅層的成長模式。
為比較有無添加上述修飾劑對銅沈積影響,首先確認金電極在0.1 M硫酸中銅的沈積,我的實驗結果和過去的研究報告相同。CV圖譜中在0..46及0.31 V出現銅在金(111)上的低電位沈積(Underpotential deposition,UPD)的特徵峰。銅原子及硫酸根分子共同吸附於金(111)表面上,形成銅覆蓋率為0.67的(3 × 3)R30°規則吸附結構。
經MPS及SPS修飾後,銅沈積必須提在較大的負偏壓才能發生,且沈積的量也較不加添加劑時來的少。因此,MPS及SPS吸附層對於銅沈積具有抑制的作用。
由in situ STM可以觀察到銅沈積的模式,當電位到達UPD的範圍時,銅層在金(111)表面是以二維的模式成長,但在較負電位時,銅則是以三維的模式成長。值得注意的是,當電極修飾一層MPS及SPS分子後,銅層會先以晶種方式分佈於整個修飾電極面,溶液中銅將沿原先銅顆粒以二維方式成長,此與不添加MPS及SPS的結果明顯不同。
III. 研究當添加氯離子於電解液中時,MPS及SPS吸附層對於電化學鍍銅的影響
由CV的結果可以發現,氯離子對於銅層的沈積具有加速的效應。STM的觀察則發現,當電位處於UPD的範圍時,在銅吸附層上可觀察到規則的吸附結構,並且,當銅層以三維方式大量沈積於金(111)電極上時,其分佈並不甚平均。
當電解液中含有氯離子時,MPS或SPS及氯離子的結合會產生加速效應,且在UPD的範圍也可觀察到規則的吸附層,而當電位到達OPD範圍,銅層以三維方式大量沈積於金(111)電極上時,其分佈仍不平均。故我們發現氯離子存在決定了銅層的成長模式,而非MPS及SPS。
I. Adlayer Structures of MPS and SPS Self-Assembled Monolayers on Au(111)
We have used in-situ scanning tunneling microscopy (STM) and cyclic voltammetry (CV) to study the self-assembled monolayers of mercaptopropylsulfonic acid (MPS) and bis(3-sulfopropyl)-disulfide (SPS) on Au(111) electrode.
Results of CV profiles and in situ STM images reveal the electrochemical features of Au(111) in 0.1 M H2SO4 and the atomic structure of well-ordered Au(111) surfaces. The herringbone pattern of reconstructed Au(111) (3×22) was observed by STM imaging. A schematic model is drawn to depict the fcc, hcp, and bridge regions of reconstructed Au(111) surface.
On the positive potential excursion, STM imaging revealed two ordered MPS adlattices, (43 × 7) and (27 × 6). Stepping the potential positively from 0.85 to 0.9 V (vs. RHE) led to formation of pits and expansion of disordered domains on Au(111) surface. Electrochemical studies revealed that around 0.05 V the MPS adlayer was reductively desorbed. Oxidative adsorption of MPS took place at 0.11 V.A precipitous increase of the anodic current emerged at 0.85 V, which arose from irreversible oxidation of the surface-bound MPS molecules.
When stepping the potential from 0.75 to 0.8V The SPS adlayer was also found to form a stripped phase with three ordered structures, (63 × 23)R30°, (10 × 19), and (63 × 31). These stripped structure resemble those observed previously for disulfide adsorbed at Au(111). The molecular axis of SPS is presumed to lie parallel to the surface. The stripped phase undergoes a structural transformation to a “saturated phase” as stepping potential to 1.05 V. This phase transition can be interpreted as an anodic adsorption of thiolate molecules produced by S-S bond cleavage of SPS on gold, and then molecules change the way of adsorption in order to contain more molecules. Three ordered structures were also seen at saturated phase, corresponding to (6 × 37), (33 × 37), and (7 × 27).
II. Electrochemical Deposition of Copper onto SPS and MPS Modified Au(111) Electrode
Copper electrodeposition from 0.1 M Sulfuric acid solutions onto MPS or SPS- modified Au(111) electrodes was studied by in situ scanning tunneling microscopy and cyclic voltammetry.
We first study the electrodeposition of copper onto Au(111) in 0.1 M H2SO4. CV reveals two well-defined features at 0.46 and 0.31 V (vs. RHE), thus, two different adlayer structures would be present; one after the first deposition peak with an intermediate copper coverage of 66.7 % coverage, and one after the second deposition peak with a coverage close to 1. In situ STM images reveal a (3 × 3)R30° structure formed in the UPD region. This pattern actually arises from the coadsorbed sulfate anions surrounded by six copper adatoms arranging in a honeycomb pattern.
CV profiles for electrodeposition of copper onto MPS or SPS-modified Au(111) are quite similar. As Au(111) was covered with MPS or SPS, the amount of copper deposited in the UPD region decreased, and the potential of bulk copper electrodeposition also shifted to more negative. Adding MPS and SPS alone in the electrolyte are inhibiting reagents for copper electrodeposition.
In situ STM images exhibit that electrodeposition of copper onto MPS or SPS modified Au(111) electrode is a two-dimensional growth when potential swept to the UPD region, then a three-dimensional growth mode was observed as stepping potentials negatively to the OPD region. Additionally, in the OPD region, a copper film with distributed grains of different size forming over the MPS or SPS-covered Au(111) surface instead of a copper overlayer consisting of a low number of isolated grains when only 0.1 M H2SO4 only present in the electrolyte.
III. Electrochemical Deposition of Copper onto SPS and MPS
Modified Au(111) in Electrolyte Contains Chloride
Cyclic voltammograms reveal that Cl- is a catalyst for copper electrodeposition, the presence of Cl- not only accelerate the copper deposition process, but also increase the amount of copper deposit on Au(111) electrode. In situ STM images reveal that a copper monolayer with a Moiré pattern formed at Au(111) surface in the UPD region. Additionally, large copper isolated grains were seen while stepping potential negatively to the OPD region.
Copper deposition from chloride ion containing sulfuric acid solutions onto MPS or SPS-modified Au(111) electrodes was also studied by CV and in situ STM. CV results show the combination of MPS and Cl- creates a strongly accelerating effect on copper electrodeposition. In situ STM imaging reveals that copper UPD onto MPS or SPS-modified Au(111) by forming a monolayer, and bulk deposition with a low number of isolated grains located on the Au(111) surface. By comparison the surface morphology obtained by STM, we are surprised that the behavior of copper electrodeposition is dominated by Cl- rather than the addition of MPS or SPS.
CH3
1. Kolb, D.M., Prog. Surf. Sci. 1996, 51, 109
2. Somorjai, G.A. and Van Hove, M.A., Prog. Surf. Sci., 1989, 30, 201
3. Müller, K. and Bunsenges, Ber., Phys. Chem., 1986, 90, 184
4. Edens, G.J., Gao, X., Weaver, M.J., J. Electroananl. Chem., 1994, 375, 357
5. Cuesta, A., Kleinert, M., Kolb, D.M., Phys. Chem. Chem. Phys., 2000, 2, 5684
6. Angerstein-Kozlowska, H., Conway, B.E., Hamelin, A., Stoicoviciu, L., Electrochim. Acta., 1986, 31, 1051
7. Angerstein-Kozlowska, H., Conway, B.E., Hamelin, A., Stoicoviciu, L., J. Electroanal. Chem., 1987, 228, 429
8. Hamelin, A., J. Electroanal. Chem., 1996, 407, 1
9. Gerwirth, A.A., Niece, B.K., Chem. Rev., 1997, 97, 1129
10. Itaya, K., Prog. Surf. Sci. 1998, 58, 121
11. Barth, J.V., Brune, H., Ertl, G., Behm, R.J., Phys. Rev. B., 1990, 42, 9307
12. Sandy, A.R., Mochrie, S.G.J., Zehner, D.M., Huang, K.G., Gibbs, D., Phys. Rev. B., 1991, 43, 4667
13. Poirier, G.E., Chem. Rev., 1997, 97, 1117
14. El-Batanouny, M., Burdick, S., Martini, K.M., and Stancioff, P., Phys. Rev. Lett., 1987, 58, 2762
15 Harten, U., Lahee, A.M., Toennies, J.P., and Wöll, Ch., Phys. Rev. Lett., 1985, 54, 2619
16. Wöll, Ch., Chiang, S., Wilson, R.J., Lippel, P.H., Phys. Rev. B, 1989, 39, 7988
17. Bae, S-E., and Gewirth, A.A., Langmuir, 2006, 22, 10315
18. Täubert, C.E., Kolb, D.M., Memmert, U., Meyer, H., J. Electrochem. Soc., 2007, 154, 6, D293
19. Kang,M., Gross, M.E., Gewirth, A.A., J. Electrochem. Soc., 2003, 150, D292
20. Dow, W.P., Huang, H.S., Yen, M.Y., Huang, H.C., J. Electrochem. Soc., 2005, 152, D425
21. Dow, W.P., Huang, H.S., Yen, M.Y., Chen, H.H., J. Electrochem. Soc., 2005, 152, C77
22. Kudelski, A., Langmuir, 2003, 19, 3805
23. Laibinis, P.E., Whitesides, G.M., Allara, D.L., Tao, Y-T., Parikh, A.N., Nuzzo, R.G., J. Am. Chem. Soc., 1991, 113, 7152
24. Vinokurov, I.A., Morin, M., Kankare, J., J. Phys. Chem. B, 2000, 104, 5790
25. Hager, G., Brolo, A.G., J. Electroanal. Chem., 2003, 550-551, 291
26. Hagenstrom, H., Schneeweiss, M.A., Kolb, D.M., Langmuir, 1999, 15, 2435
27. Sawaguchi, T., Sato, Y., Mizutani, F., Phys. Chem. Chem. Phys., 2001, 3, 3399
28. Dakkouri, A.S., Kolb, D.M., Edelstein-Shima, R., Mandler, D., Langmuir, 1996, 12, 2849
29. Zhang, J., Chi, Q., Nielsen, J.U., Friis, E.P., Andersen, J.E.T., Ulstrup, J., Langmuir, 2000, 16, 7229
30. Imabayashi, S., Iida, M., Hobara, D., Feng, Z.Q., Niki, K., Kakiuchi, T., J. Electroanal. Chem., 1997, 428, 33
31. Hobara, D., Miyake, K., Imabayashi, S., Niki, K., Kakiuchi, T., Langmuir, 1998, 14, 3950
32. Walczak, M.M., Popenoe, D.D., Deinhammer, R.S., Lamp, B.D., Chung, C., Porter, M.D., Langmuir, 1991, 7, 2687
33. Ma, F., Lennox, B.R., Langmuir, 2000, 16, 6188
34. Paik, W.-K., Eu, S., Lee, K., Chon, S., Kim, M., Langmuir, 2000, 16, 10198
35. Chon, S., Paik, W.-K., Phys. Chem. Chem. Phys., 2001, 3, 3405
36. Widrg, C.A., Chung, C., Porter, M.D., J. Electroanal. Chem., 1991, 310, 335
37. Weisshaar, D.E., Lamp, B.D., Porter, M.D., J. Am. Chem. Soc., 1992, 114, 5860
38. Edinger, K., Gölzhäuser, A., Demota, K., Wöll, Ch., Grunze, M., Langmuir, 1993, 9, 4
39. Schönenberger, C., Sondag-Huethorst, J.A.M., Jorritsma, J., Fokkink, L.G.J., Langmuir, 1994, 10, 611
40. Sondag-Huethorst, J.A.M., Schönenberger, C., Jorritsma, J., Fokkink, L.G.J., J. Phys. Chem., 1994, 98, 6826
41. Mcdermott, C.A., Mcdermott, M.T., Green, J.-B., Porter, M.D., J. Phys. Chem., 1995, 99, 13257
42. Noh, J., Murase, T., Nakajima, K., Lee, H., Hara, M., J. Phys. Chem. B, 2000, 104, 7411
43. Nuzzo, R.G., Zegarski, B.R., Dubois, L.H., J. Am. Chem. Soc., 1987, 109, 733
44. Bain, C.D., Biebuyck, H.A., Whitesides, G.M., Langmuir, 1989, 5, 723
45. Biebuyck, H.A., Whitesides, G.M., Lamgmuir, 1993, 9, 1766
46. Biebuyck, H.A., Bain, C.D., Whitesides, G.M., Langmuir, 1994, 10, 1825
47. Widrig, C.A., Alves, C.A., Porter, M.D., J. Am. Chem. Soc., 1991, 113, 2805
48. Alves, C.A., Smith, E.L., Porter, M.D., J. Am. Chem. Soc., 1992, 114, 1222
49. Yang, Y.-C., Chang, T.-Y., Lee, Y.L., J. Phys. Chem. C, 2007, 111, 4014
50. Poirier, G.E., Langmuir, 1999, 15, 1167
51. Fitts, W.P., White, J.M., Poirier, G.E., Langmuir, 2002, 18, 1561
52. Fitts, W.P., White, J.M., Langmuir, 2002, 18, 2096
CH4
1. Nakay, Y., Zei, M.S., Kolb, D.M., Lehmpfuhl, G., Ber. BunsenGes. Phys. Chem., 1984, 88, 340
2. Zei, M.S., Qiao, G., Lehmpfuhl, G., Kolb, D.M., Ber. BunsenGes. Phys. Chem., 1987, 91, 349
3. Herrero, E., Buller, L.J., and Abruña, H.D., Chem. Rev., 2001, 101, 1897
4. Schneeweiss, M.A. and Kolb, D.M., Phys. Stat. Sol. (a), 1991, 173, 51
5. Hölzle, M.H., Zwing, V., Kolb, D.M., Electrochim. Acta., 1995, 40, 1237
6. Magnussen, O.M., Hotlos, J., Nichols, R.J., Kolb, D.M., Behm, R.J.,Phys. Rev. Lett.,1990, 64, 2929
7. Magnussen, O.M., Hotlos, J., Beitel, G., Kolb, D.M., Behm, R.J., J. Vac. Sci. Technol. B, 1991, 9, 969
8. Hachiya, T., Honbo, H., Itaya, K. J. Electroanal. Chem., 1991, 315, 275
9. Green, M.P., Hanson, K.P., J. Vac. Sci. Technol. A, 1992, 10, 3012
10. Manne, S., Hansma, P.K., Massie, J., Elings, V.B., Gewirth, A.A., Science, 1991, 251, 183
11. Shi, Z., Lipkowski, J., J. Electroanal. Chem., 1994, 364, 289
12. Shi, Z., Lipkowski, J., J. Electroanal. Chem., 1994, 365, 303
13. Shi, Z., Wu, S., Lipkowski, J., J. Electrochim. Acta., 1995, 40, 9
14. Gordon, J.G., Melroy, O.R., Toney, M.F., J. Electrochim. Acta., 1995, 40, 3
15. Borges, G.L., Kanazawa, K.K., Gordon, J.G. II, Ashley, K., Richer, J., J. Electroanal. Chem., 1994, 364, 281
16. Watanabe, M., Uchida, H., Miura, M., Ikeda, N., J. Electroanal. Chem., 1995, 384, 191
17. Toney, M.F., Howard, J.N., Richer, J., Borges, G.I., Gordon, J.G., Melroy, O.R., Phys.Rev.Lett., 1995, 75, 4472
18. Dow, W.-P., Huang, H.-S., J. Electrochem. Soc., 2005, 152, 2, C67
19. Dow, W.-P., Huang, H.-S., Yen, M.-Y., Chen, H.-H., J. Electrochem. Soc., 2005, 152, 2, C77
20. Brune, H., Surf. Sci. Rep., 1998, 31, 21
21. Hangenström, H., Schneeweiss, M.A., Kolb, D.M., Langmuir, 1999, 15, 22, 7802
22. Cavalleri, O., Gilbert, S.E., Kern, K., Chem. Phys. Lett., 1997, 269, 479
23. Petri, M., Kolb, D.M., Memmert, U., Meyer, H., Electrochim. Acta, 2003, 183, 49
24. Cavalleri, O., Bittner, A.M., Kind, H., Kern, K., Z. Phys. Chem., 1999, 208, 107
25. Epple, M., Bittner, A.M., Kuhnke, K., Kern, K., Zheng, W.-Q., Tadjeddine, A., Langmuir, 2002, 18, 773
26. Nishizawa, M., Sunagawa, T., Yoneyama, H., Langmuir, 1997, 13, 5215
CH5
1. Schmidt, E., Gygax, H.R., J. Electroanal. Chem., 1966, 12, 300
2. Magnusseen, O.M., Hotlos, J., Nichols, R.J., Kolb, D.M., Behm, R.J., Phys. Rev. Lett., 1990, 64, 2929
3. Magnusseen, O.M., Hotlos, J., Beitel, G., Kolb, D.M., Behm, R.J., J. Vac. Sci. Technol. B, 1991, 9, 969
4. Hachiya, T., Honbo, H., Itaya, K., J. Electroanal. Chem., 1991, 315, 275
5. Green, M.P., Hanson, K.P., J. Vac. Sci. Technol. A, 1992, 10, 3012
6. Wu, Z.-L., Yau, S.-L., Langmuir, 2001, 17, 4627
7. Michaelis, R., Zei, M.S., Zhai, R.S., Kolb, D.M., J. Electroanal. Chem., 1992, 339, 299
8. Zei, M.S., Wu, K., Eiswirth, M., Ertl, G., Electrochim. Acta, 1999, 45, 809
9. Markovic, N.M., Ross, P.N., Langmuir, 1993, 9, 580
10. Markovic, N.M., Gasteiger, H.A., Lucas, C.A., Tidswell, I.M., Ross, P.N., Surf. Sci., 1995, 335, 91
11. Herrero, E., Buller, L.J., Abruña, H.D., Chem. Rev., 2001, 101, 1897
12. Matsumoto, H., Oda, I., Inukai, J., Ito, M., J. Electroanal. Chem., 1994, 379, 223
13. Hotlos, J., Magnussen, O.M., Behm, R.J., Surf. Sci., 1995, 335, 129
14. Matsumoto, H., Oda, I., Inukai, J., Ito, M., J. Electroanal. Chem., 1993, 356, 275
15. Kang, M., Gewirth, A.A., J. Electrochem. Soc., 2003, 150, C426
16. Bonou, L., Eyraud, M., Denoyel, R., Massiani, Y., Electrochim. Acta., 2002, 47, 4139
17. Nagy, Z., Blaudeau, J.P., Hung, N.C., Curtiss, L.A., Zurawski, D.J., J. Electrochem. Soc., 1995, 142, L87
18. Soares, D.M., Wasle, S., Weil, K.G., Doblhofer, K., J. Electrochem. Soc., 2002, 532, 353
19. Láng, G.G., Ujvári, M., Horányi, G., J. Electrochem. Soc., 2002, 522, 179
20. Dow, W.-P., Huang, H.-S., Yen, M.-Y., Chen, H.-H., J. Electrochem. Soc., 2005, 152, 2, C77
21. Dow, W.-P., Huang, H.-S., Lin, Z., Electrochem. Solid-State Lett., 2003, 6, C134
22. Dow, W.-P., Huang, H.-S., J. Electrochem. Soc., 2005, 152, 2, C67
23. Kuehn, C.G., Isied, S.S., Prog. Inorg. Chem., 1980, 27, 53
24. Blower, P.J., Dilworth, J.R., Coord. Chem. Rev., 1987, 76, 121
25. Bain, C.D., Troughton, E.B., Tao, Y.-T., Evall, J., Whitesides, G.M., Nuzzo, R.G., J. Am. Chem. Soc., 1989, 111, 321
26. Kolb, D.M., Prog. Surf. Sci. 1996, 51, 109