簡易檢索 / 詳目顯示

研究生: 陳怡瑄
Chen, Yi-Syuan
論文名稱: 臺灣南部低度變質泥岩中黃鐵礦─磁黃鐵礦轉變之電子顯微研究
Electron microscopic evidence for syntectonic transition from pyrite to pyrrhotite in low-grade metapelites from southern Taiwan
指導教授: 江威德
Jiang, Wei-Teh
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 171
中文關鍵詞: 磁黃鐵礦等變質度線低度變質泥岩
外文關鍵詞: pyrrhotite, isograd, low-grade metapelites, electron microscopypyrrhotite, isograd, low-grade metapelites, electron microscopy
相關次數: 點閱:85下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 黃鐵礦-磁黃鐵礦轉變發生於約300°C之變質溫度,具有指示「等變質度線」之潛在意義,可發生於伊萊石結晶度值所定義近變質帶(anchizone)與淺變質帶(epizone)之交界。在缺乏指標礦物之低度變質泥岩區,瞭解此等硫化鐵礦物相轉變之機制,對框限變質條件或進程是重要的基礎,然過去研究多著重於熱力學模擬計算反應條件及其影響因素,甚少有實質顯微分析資料可供探討轉變機制。本研究以高解析度掃瞄式電子顯微鏡,配合X光能量分散光譜(EDS)及電子背向散射繞射(EBSD)等方法,分析臺灣南部橫貫公路沿線低度變質泥岩中礦物成分及微組構變化,探討黃鐵礦轉變為磁黃鐵礦之變質反應機制。
    在跨越大關山斷層之南橫變質泥岩剖面,由西向東,隨變質度升高,綠泥石與白雲母之優勢排列及劈理發育程度趨於顯著,新生硫化礦物皆大致沿劈理延伸生長。黃鐵礦為大關山斷層以西(近變質帶)之主要硫化礦物,大部分形成莓狀體或細粒晶體之不規則狀集合體,周圍常見新生綠泥石,局部可見黃鐵礦再結晶及蔓生現象,黃銅礦、含鐵閃鋅礦及含硒方鉛礦等次要硫化物生長於莓狀體周圍或填隙於黃鐵礦莓狀體內。大關山斷層鄰近地帶可見長板狀磁黃鐵礦沿劈理生長,因矽酸鹽礦物再結晶作用,磁黃鐵礦晶界呈不規則狀,邊緣常為金紅石所取代或包圍,局部為富稀土綠簾石羣礦物或方解石所取代;黃鐵礦莓狀體有矽化和磁黃鐵礦化現象,粒徑較大之半自形至自形黃鐵礦晶體亦局部發生磁黃鐵礦化;EBSD資料顯示磁黃鐵礦係為單晶以假像形態部份或完全取代多晶黃鐵礦莓狀體;此外,可見次要黃銅礦、含鐵閃鋅礦及含硒方鉛礦填隙於黃鐵礦及磁黃鐵礦化莓狀體,或包裹於磁黃鐵礦晶體內,偶亦另可見輝砷鈷礦(含鎳、鐵)包裹體。大關山斷層以東之淺變質帶以磁黃鐵礦為主要硫化礦物,閃鋅礦、黃銅礦及方鉛礦等次要硫化物含量減少,而黃鐵礦消失;EBSD資料顯示磁黃鐵礦及石英晶粒皆有塑性變形之現象,發育磁黃鐵礦{0001}〈11-20〉底面滑移及石英 {10-10}〈1-210〉滑移系統。EDS分析顯示磁黃鐵礦成分於大關山斷層帶附近約為Fe7S8,另含鎳0.35–0.51 wt.%,大關山斷層以東磁黃鐵礦成分則近似Fe9S10,含鎳0.23–0.83 wt.%。
    以上資料顯示南橫變質泥岩中之黃鐵礦-磁黃鐵礦轉變為同構造變質作用所致,大關山斷層附近為轉變過渡帶,初期反應以微觀尺度溶解及再結晶作用方式進行,伴隨矽酸鹽礦物再結晶作用及銅、鋅、鉛、鎳、鈷、鎵、銦、鎘、鈦、銀、硒、砷及稀土元素之遷移,過渡帶中磁黃鐵礦及黃鐵礦生長組織之複雜多變,顯示變質反應或條件未達穩定平衡。

    A pyrite-pyrrhotite boundary occurs across the mountain-building Daguanshan fault zone in accordance with an age gap and a grade change from the prehnite-pumpellyite to lower greenschist facies in the Tertiary slate belt of the Backbone Range, southern Taiwan. This study characterized the microstructural and mineralogical changes of metapelites across the boundary utilizing high-resolution scanning electron microscopy, coupled with electron backscatter diffraction and X-ray energy-dispersive spectroscopic techniques. West of the fault zone, the pyrite zone is characterized by a weak foliation roughly parallel to elongated patches or layers of framboidal and irregular aggregates of fine-grained pyrite that show partial recrystallization and overgrowth features in association with neoformation of chlorite, chalcopyrite and Fe-bearing sphalerite and local crystallization of coarser grained euhedral pyrite crystals without the presence of pyrrhotite. In the pyrite-pyrrhotite borderland across the fault zone (the transition zone), a strong S1 foliation is present due to strongly recrystallized phyllosilicates, quartz and carbonates and the proportion of fine-grained pyrite including framboidal pyrite diminishes in part due to pseudomorphic replacement by quartz and pyrrhotite. Sphalerite, chalcopyrite and selenium-bearing galena are present in the interstices among or in the vicinity of pyrite microcrystals, and form inclusions within or intimate intergrowths with pyrrhotite. In addition, nickel- and iron-bearing cobaltite was found to be in close contact with pyrrhotite. The neoformed pyrrhotite (mostly Ni-bearing Fe7S8) occurs in forms of bands of disseminated submicron-sized crystals and elongated aggregates of coarsegrained crystals with irregular outlines confined mainly by recrystallized silicates, more or less parallel to the S1 foliation. Complete or partial pseudomorphic replacement of framboidal pyrite microcrystals by pyrrhotite was evidenced by coalescing octahedral grains of pyrrhotite having a single crystallographic orientation and a framboidal texture. Additional pyrrhotite growth over such pseudomorphs formed aggregates of coarser grains locally replaced by rutile and allanite. In the pyrrhotite zone east of the fault zone, pyrrhotite (largely Ni-bearing Fe9S10) occurs as larger subhedral to euhedral crystals and is associated with the S1 foliation in the absence of pyrite. Oxidation of pyrrhotite is commonly found. EBSD data also shows the plastic deformation texture in both pyrrhotite and quartz, and implies the deformation of pyrrhotite along the {0001}〈11-20〉 basal slip and that of quartz along the {10-10}〈1-210〉 slip system. The result indicates that the pyrite-pyrrhotite boundary marks a syntectonic metamorphic reaction from pyrite to pyrrhotite in the Taiwan orogeny. The transition initially occurred via progressive dissolution and crystallization at microscale and was coeval with intense silicate recrystallization and mobilization of Cu, Zn, Pb, Ni, Co, Ga, In, Cd, Ti, Ag, Se, As, and REE.

    摘要 I Abstract III 致謝 VIII 目錄 X 圖目錄 XIII 表目錄 XVI 第一章:緒論 1 1.1. 前言 1 1.2. 文獻回顧 6 1.2.1. 變質作用中硫化物之演化:黃鐵礦─磁黃鐵礦轉變 6 1.2.2. 磁黃鐵礦結構 13 1.2.3. 磁黃鐵礦等變質度線 15 1.3. 研究目的 17 第二章:地質背景與樣品採集 18 2.1. 地質背景 18 2.1.1.巨觀構造及地層分區 18 2.1.2.變質年代 22 2.1.3.微組構分區 22 2.2. 樣品採集 27 第三章:研究方法 30 3.1. 實驗流程 30 3.2. 試片製作及處理 31 3.3. 掃瞄式電子顯微鏡分析 31 3.3.1.背向散射電子影像(BEI) 31 3.3.2. X光能量分散光譜儀(EDS) 32 3.3.3.電子背向散射繞射(EBSD) 34 第四章:研究結果 37 4.1. 礦物組合 39 4.2. 硫化鐵礦物分帶之組構特徵與生長關係 40 4.2.1.黃鐵礦帶 40 4.2.2.過渡帶 52 4.2.3.磁黃鐵礦帶 76 4.3. 背向散射繞射微組構分析 86 4.4. 礦物化學 92 第五章:討論 102 5.1. 變質泥岩中黃鐵礦之演化 102 5.2. 變質泥岩中磁黃鐵礦之演化 108 5.3. 硫化物相及其微量元素分布 118 5.4. 磁黃鐵礦生成與變質作用及構造時序關係 120 5.5. 磁黃鐵礦等變質度線之應用 121 5.6. 探討磁黃鐵礦作為由源至匯(source-to-sink)之示蹤劑 123 5.7. 未來延伸研究 125 第六章:結論 126 英文參考文獻 127 中文參考文獻 142 附錄一、黃鐵礦定量分析之EDS光譜 143 附錄二、閃鋅礦定量分析之結果 144 附錄三、黃銅礦之定量分析結果 147 附錄四、方鉛礦之定量分析結果 149 附錄五、磁黃鐵礦之定量分析結果 150

    Alfantazi, A. M., and Moskalyk, R. R. (2003) Processing of indium: a review. Minerals Engineering, 16(8), 687-694.
    Alirezaei, S., and Cameron, E. M. (2001) Variations of sulfur isotopes in metamorphic rocks from Bamble Sector, southern Norway: a laser probe study. Chemical Geology, 181(1-4), 23-45.
    Alonso-Azcarate, J., Rodas, M., Bottrell, S. H., Raiswell, R., Velasco, F., and Mas, J. R. (1999) Pathways and distances of fluid flow during low-grade metamorphism: evidence from pyrite deposits of the Cameros Basin, Spain. Journal of Metamorphic Geology, 17(4), 339-348.
    Anderson, G., and Burnham, C. W. (1965) The solubility of quartz in super-critical water. American Journal of Science, 263(6), 494-511.
    Antun, P. (1967) Sedimentary pyrite and its metamorphism in the Oslo region. Norsk Geologisk Tidsskrift, 47(21), 1-235.
    Arias, D., Corretge, L. G., and Villa, L. (1998) A new source of isotopically heavy sulphur in lode-gold deposits of NW Spain: A batch volatilization process in the conversion of pyrite to pyrrhotite by contact metamorphism. Terra Nova, 10(3), 136-138.
    Arnold, R. G. (1969) Pyrrhotite phase relation below 304 °C. Economic Geology, 64(4), 405-419.
    Ayora, C., and Casas, J. M. (1986) Strata-bound As-Au mineralization in pre-caradocian rocks from the Vall de Ribes, eastern Pyrenees, Spain. Mineralium Deposita, 21(4), 278-287.
    Barnes, H. (2015) Hydrothermal Processes: The Development of Geochemical Concepts in the Latter Half of the Twentieth Century. Geochemical Perspectives, 4(1), 1-93.
    Barrett, T. J., Wares, R. P., and Fox, J. S. (1988) Two-Stage hydrothermal formation of a lower proterozoic sediment-hosted massive sulfide deposit, Northern Labrador trough, Quebec. Canadian Mineralogist, 26, 871-888.
    Barrie, C. D., Boyle, A. P., Cook, N. J., and Prior, D. J. (2010) Pyrite deformation textures in the massive sulfide ore deposits of the Norwegian Caledonides. Tectonophysics, 483(3-4), 269-286.
    Barton, P. B., and Toulmin, P. (1966) Phase relations involving sphalerite in the Fe-Zn-S system. Economic Geology, 61(5), 815-849.
    Batt, A. P. (1972) Nickel distribution in hexagonal and monoclinic pyrrhotite. Canadian Mineralogist, 11, 892-897.
    Beach, A. (1979) Pressure solution as a metamorphic process in deformed terrigenous sedimentary rocks. Lithos, 12(1), 51-58.
    Becker, M., de Villiers, J., and Bradshaw, D. (2010) The mineralogy and crystallography of pyrrhotite from selected nickel and PGE ore deposits. Economic Geology, 105(5), 1025-1037.
    Bell, T. H. (1978) The development of slaty cleavage across the Nackara Arc of the Adelaide Geosyncline. Tectonophysics, 51(3), 171-201.
    Bell, T. H., and Cuff, C. (1989) Dissolution, solution transfer, diffusion versus fluid flow and volume loss during deformation/metamorphism. Journal of Metamorphic Geology, 7(4), 425-447.
    Bennett, C. E. G., and Graham, J. (1980) New observations on natural pyrrhotites: Part III, Thermomagnetic experiments. American Mineralogist, 65(7-8), 800-807.
    Bennett, C. E. G., and Graham, J. (1981) New observations on natural pyrrhotites: magnetic transition in hexagonal pyrrhotite. American Mineralogist, 66(11-12), 1254-1257.
    Bethke, P. M., and Barton, P. B. (1971) Distribution of some minor elements between coexisting sulfide minerals. Economic Geology, 66(1), 140-163.
    Beyssac, O., Simoes, M., Avouac, J. P., Farley, K. A., Chen, Y.-G., Chan, Y.-C., and Goffé, B. (2007) Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics, 26(6), TC6001.
    Boorman, R. S. (1967) Subsolidus studies in the ZnS-FeS-FeS2 system. Economic Geology, 62(5), 614-631.
    Brill, B. A. (1989) Trace-element contents and partitioning of elements in ore minerals from the CSA Cu–Pb–Zn deposit, Australia. Canadian Mineralogist, 27, 263-274.
    Brown, D. (1994) Low temperature, low pressure deformation and metamorphism of the Vangorda massive sulphide orebody, Yukon, Canada. Mineralium Deposita, 29(4), 330-340.
    Bruker. (2011) Combined EBSD and EDS analysis: Advances in modern materials characterization. Gert Nolze, Bruker Nano, Berlin, EBSD/EDS Webinar.
    Buerger, M. J. (1947) The cell and symmetry of pyrrhotite. American Mineralogist, 32, 411-414.
    Bystrom, A. (1945) Monoclinic magnetic pyrites. Arkiv för kemi, Mineralogi och Geologi, 19(8), 1-8.
    Carpenter, R. H. (1974) Pyrrhotite Isograd in Southeastern Tennessee and Southwestern North Carolina. Geological Society of America Bulletin, 85(3), 451.
    Carpenter, R. H., and Desborough, G. A. (1964) Range in solid solution and structure of naturally occurring troilite and pyrrhotite. American Mineralogist, 49(9-1), 1350-1365.
    Castaing, R. (1951) Application of electron probes to local chemical and crystallographic analysis. Thesis (Ph. D.), University of Paris.
    Clark, A. H. (1966) Stability field of monoclinic pyrrhotite. Transactions of the Institute of Mining and Metallurgy, 75, B232-235.
    Clark, M., Fisher, D. M., and Lu, C.-Y. (1992) Strain Variations in the Eocene and older rocks exposed along the Central and Southern Cross-Island Highways, Taiwan. Acta Geologica Taiwanica Science Reports of The National Taiwan University, 30, 1-10.
    Connolly, J. A. D., and Cesare, B. (1993) COHS fluid composition and oxygen fugacity in graphitic metapelites. Journal of Metamorphic Geology, 11, 379-379.
    Cook, N. J., Ciobanu, C. L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B., and Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta, 73(16), 4761-4791.
    Corlett, M. (1968) Low-iron polymorphs in the pyrrhotite group. Zeitschrift für Kristallographie-Crystalline Materials, 126(1-6), 124-134.
    Craig, J. R., Vokes, F. M., and Solberg, T. N. (1998) Pyrite: physical and chemical textures. Mineralium Deposita, 34(1), 82-101.
    Crespi, J. M., Chan, Y.-C., and Swaim, M. S. (1996) Synorogenic extension and exhumation of the Taiwan hinterland. Geology, 24(3), 247.
    Durney, D. W. (1972) Solution-transfer, an important geological deformation mechanism. Nature, 235, 315-317.
    Emmermann, R., and Lauterjung, J. (1997) The German continental deep drilling program KTB: overview and major results. Journal of Geophysical Research: Solid Earth, 102(B8), 18179-18201.
    Engström, A. (2013) Metal mobility during metamorphism and formation of orogenic gold deposits: Insights from the Dalradian of Scotland. (Master’s thesis), Stockholm University, 1-69.
    Ernst, W. G., and Jahn, B. M. (1987) Crustal Accretion and Metamorphism in Taiwan, a Post-Palaeozoic Mobile Belt. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 321(1557), 129-161.
    Etheridge, M. A., Wall, V. J., Cox, S. F., and Vernon, R. H. (1984) High fluid pressures during regional metamorphism and deformation: implications for mass transport and deformation mechanisms. Journal of Geophysical Research: Solid Earth, 89(B6), 4344-4358.
    Ferry, J. M. (1981) Petrology of graphitic sulfide-rich schists from south-central Maine: an example of desulfidation during prograde regional metamorphism. American Mineralogist, 66, 908-930.
    Finklea, S., Cathey, L., and Amma, E. L. (1976) Investigation of the bonding mechanism in pyrite usinf the moessbauer effect and X-ray crystallography. Acta Crystallographica A, 32, 529-537.
    Fleet, M. E. (1978) The pyrrhotite-marcasite transformation. Canadian Mineralogist, 16(1), 31-35.
    Fournier, R. O., and Rowe, J. J. (1977) Solubility of amorphous silica in water at high temperatures and high pressure. American Mineralogist, 62, 9-10.
    Fuller, C. W., Willett, S. D., Fisher, D., and Lu, C. Y. (2006) A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics, 425(1), 1-24.
    Fyfe, W. S., Price, N. J., and Thompson, A. B. (1978) Fluids in the Earth's Crust. Elsevier. Amsterdam, 383.
    Geisler, T., Pidgeon, R. T., Kurtz, R., Bronswijk, W. V., and Schleicher, H. (2003) Experimental hydrothermal alteration of partially metamict zircon. American Mineralogist, 88(10), 1496-1513.
    Glinnemann, J., King, H. E. Jr, Schulz, H., Hahn, T, la Placa, S. J., and Dacol, F. (1992) Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure. Zeitschrift fuer Kristallographie, 198, 177-212.
    Gray, D. R., and Durney, D. W. (1979) Investigations on the mechanical significance of crenulation cleavage. Tectonophysics, 58(1), 35-79.
    Gronvold, F., and Haraldsen, H. (1952) On the phase relations of synthetic and natural pyrrhotites (Fe1-xS). Acta Chemica Scandinavica, 6(9-10), 1452-1469.
    Halbig, J. B., and Wright, H. D. (1969) Distribution of selenium between hydrothermally synthesized sphalerite and galena at trace-level concentrations. Transactions. American Geophysical Union, 50, 339.
    Hall, A., Boyce, A., and Fallick, A. (1994) A sulphur isotope study of iron sulphides in the late Precambrian Dalradian Ardrishaig Phyllite Formation, Knapdale, Argyll. Scottish Journal of Geology, 30(1), 63-71.
    Hall, A.J. (1982) Gypsum as a precursors to pyrrhotite in metamorphic rocks. Evidence from the Ballachulish Slate, Scotland. Mineralium Deposita, 17, 401-409
    Hall, A. J. (1986) Pyrite-pyrrhotine redox reactions in nature. Mineralogical Magazine, 50(6), 223-229.
    Hall, A. J., Boyce, A. J., and Fallick, A. E. (1987) Iron sulphides in metasediments: isotopic support for a retrogressive pyrrhotite to pyrite reaction. Chemical Geology: Isotope Geoscience Section, 65(3), 305-310.
    Hall, A. J., Boyce, A. J., and Fallick, A. E. (1988) A sulphur isotope study of iron sulphides in the Late Precambrian Dalradian Easdale Slate Formation, Argyll, Scotland. Mineralogical Magazine, 52(367 Part 4), 483-490.
    Han, T.-M. (1968) Ore mineral relations in the Cuyuna sulfide deposit, Minnesota. Mineralium Deposita, 3(2), 109-134.
    Harker, A. (1886). On slaty cleavage and allied rock-structures. British Association for the Advancement of Science, 1885, 813-852.
    Harlov, D. E., and Hansen, E. C. (2005) Oxide and sulphide isograds along a Late Archean, deep-crustal profile in Tamil Nadu, south India. Journal of Metamorphic Geology, 23(4), 241-259.
    Hoefs, J., and Frey, M. (1976) The isotopic composition of carbonaceous matter in a metamorphic profile from the Swiss Alps. Geochimica et Cosmochimica Acta, 40(8), 945-951.
    Höll, R., Kling, M., and Schroll, E. (2007) Metallogenesis of germanium—a review. Ore Geology Reviews, 30(3), 145-180.
    Horng, C.-S., and Huh, C.-A. (2011) Magnetic properties as tracers for source-to-sink dispersal of sediments: A case study in the Taiwan Strait. Earth and Planetary Science Letters. 309, 141-152
    Horng, C.-S., Huh, C.-A., Chen, K.-H., Lin, C.-H., Shea, K.-S., and Hsiung, K.-H. (2012) Pyrrhotite as a tracer for denudation of the Taiwan orogen. Geochemistry, Geophysics, Geosystems, 13(8).
    Horng, C.-S., and Roberts, A. P. (2006) Authigenic or detrital origin of pyrrhotite in sediments? : Resolving a paleomagnetic conundrum. Earth and Planetary Science Letters, 241(3-4), 750-762.
    Hoschek, G. (1984) Alpine metamorphism of calcareous metasediments in the Western Hohe Tauern, Tyrol: mineral equilibria in COHS fluids. Contributions to Mineralogy and Petrology, 87(2), 129-137.
    Huang, C.-Y., Wu, W.-Y., Chang, C.-P., Tsao, S., Yuan, P.-B., Lin, C.-W., and Xia, K.-Y. (1997) Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics, 281(1), 31-51.
    Hutcheon, I. (1979) Sulfide-oxide-silicate equilibria; Snow Lake, Manitoba. American Journal of Science, 279(6), 643-665.
    Itaya, T. (1975) Pyrrhotite from the Sanbagawa politic schists of the Shiraga-yama area, central Shikoku, Japan. Mineralogical Journal, 8(1), 25-37.
    Itaya, T. (1981) Carbonaceous material in pelitic schists of the Sanbagawa metamorphic belt in central Shikoku, Japan. Lithos, 14(3), 215-224.
    Itaya, T., Brothers, R. N., and Black, P. M. (1985) Sulfides, oxides and sphene in high-pressure schists from New Caledonia. Contributions to Mineralogy and Petrology, 91(2), 151-162.
    Kajiwara, Y., Sasaki, A., and Matsubara, O. (1981) Kinetic sulfur isotope effects in the thermal decomposition of pyrite. Geochemical Journal, 15(4), 193-197.
    Kissin, S. A. (1974) Phase relations in a portion of the Fe-S system. Thesis (Ph. D.), University of Toronto.
    Kissin, S. A. and Scott, S. D. (1982) Phase relations involving pyrrhotite below 350 °C. Economic Geology, 77(7), 1739-1754.
    Kluckhohn, R. S., Cutter, G. A., and Radford-Knoery, J. (1990) Selenium and sulfur in Black Sea sediments. Eos, Transactions, American Geophysical Union, 71, 151.
    Koljonen, T. (1973) Selenium in certain metamorphic rocks. Bulletin of the Geological Society of Finland, 45, 107-117.
    Kontny, A., de Wall, H., Sharp, T. G., and Pósfai, M. (2000) Mineralogy and magnetic behavior of pyrrhotite from a 260 °C section at the KTB drilling site, Germany. American Mineralogist, 85(10), 1416-1427.
    Koons, P. O., Craw, D., Cox, S. C., Upton, P., Templeton, A. S., and Chamberlain, C. P. (1998) Fluid flow during active oblique convergence: A Southern Alps model from mechanical and geochemical observations. Geology, 26(2), 159-162.
    Kübler, L., and Lindqvist, B. (1979) Tectonic control of pyrrhotite phase distribution studied on a fold structure. Lithos, 12(3), 241-249.
    Kullerud, G. (1986) Monoclinic pyrrhotite. Bulletin Geological Society of Finland, 58, 293-305.
    Kullerud, G., Doe, B. R., Buseck, P. R., and Trbften, P. F. (1963) Heating experiments on monoclinic pyrrhotites. Year Book -Carnegie Institution of Washington, 62, 210-213.
    Large, R., Thomas, H., Craw, D., Henne, A., and Henderson, S. (2012) Diagenetic pyrite as a source for metals in orogenic gold deposits, Otago Schist, New Zealand. New Zealand Journal of Geology and Geophysics, 55(2), 137-149.
    Legrand, C., and Delville, J. (1953) Sur lesparamètres cristallins durutile et de l'anatase. Comptes Rendus Hebdomadaires des Seances de I’Academie des Sciences, 236, 944–946.
    Lin, A. T., Watts, A. B., and Hesselbo, S. P. (2003) Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478.
    Lin, M.-L., Lin, C.-K., and You, M.-J. (2001) Vitrinite reflectance as a possible indicator of metamorphic grade and stratigraphic position of formations a study of Oligocene metapelites in NE Taiwan. Journal of Asian Earth Sciences, 19, 223-232.
    Linker, M. F., Kirby, S. H., Ord, A., and Christie, J. M. (1984) Effects of compression direction on the plasticity and rheology of hydrolytically weakened synthetic quartz crystals at atmospheric pressure. Journal of Geophysical Research, 89(B6), 4241-4255.
    Liu, K.-K., Cheng, C.-H., and Chen, P.-Y. (1987) Carbonaceous matter in some pelitic rocks of the northern central range, Taiwan. Memoir of the Geological Society of China, 8, 93-112.
    Liu, T.-K., Hsieh, S., Chen, Y.-G., and Chen, W.-S. (2001) Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating. Earth and Planetary Science Letters, 186(1), 45-56.
    Lloyd, G. E., Farmer, A. B., and Mainprice, D. (1997) Misorientation analysis and the formation and orientation of subgrain and grain boundaries. Tectonophysics, 279(1), 55-78.
    McClay, K. R., and Ellits, P. G. (1983) Deformation and recrystallization of pyrite. Mineralogical Magazine, 47, 527-538.
    Moles, N. R. (1983) Sphalerite composition in relation to deposition and metamorphism of the Foss stratiform Ba-Zn-Pb deposit, Aberfeldy, Scotland. Mineralogical Magazine, 47, 487-500.
    Moskalyk, R. R. (2003) Gallium: the backbone of the electronics industry. Minerals Engineering, 16(10), 921-929.
    Nakazawa, H., and Morimoto, N. (1970) Pyrrhotite phase relations below 320°C. Proceedings of the Japan Academy, 46(7), 678-683.
    Park, Y.-H., Doh, S.-J., Kim, W., and Suk, D. (2005) Deformation history inferred from magnetic fabric in the southwestern Okcheon metamorphic belt, Korea. Tectonophysics, 405(1-4), 169-190.
    Pitcairn, I. K., Olivo, G. R., Teagle, D. A. H., and Craw, D. (2010) Sulfide Evolution during Prograde Metamorphism of the Otago and Alpine Schists, New Zealand. The Canadian Mineralogist, 48(5), 1267-1295.
    Poulson, S. R., and Ohmoto, H. (1989) Devolatilization equilibria in graphite-pyrite-pyrrhotite bearing pelites with application to magma-pelite interaction. Constributions to Mineralogy and Petrology, 101, 418-425.
    Powell, A.V., Vaqueiro, P., Knigh, K. S., Chapon, L. C., and Sanchez, R. D. (2004) Structure and magnetism in synthetic pyrrhotite Fe7S8: A powder neutron-diffraction study. Physical Review B-Condensed Matter and Materials Physics, 70, 1-12
    Putnis, A. (2002) Mineral replacement reactions: From macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66(5), 689-708.
    Qian, G., Xia, F., Brugger, J., Skinner, W. M., Bei, J., Chen, G., and Pring, A. (2011) Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220°C: An experimental study of reaction textures and mechanisms. American Mineralogist, 96(11-12), 1878-1893.
    Ramdohr, P. (1969) The ore minerals and their intergrowths. English Translation of the 3rd Edition. Oxford Pergamon Press, 1174 pages.
    Robin, P.-Y. F. (1979) Theory of metamorphic segregation and related processes. Geochimica et Cosmochimica Acta, 43(10), 1587-1600.
    Robion, P., Kissel, C., de Lamotte, D. F., Lorand, J. P., and Guézou, J. C. (1997) Magnetic mineralogy and metamorphic zonation in the Ardennes Massif (France-Belgium). Tectonophysics, 271(3), 231-248.
    Rochette, P. (1987) Metamorphic control magnetic mineralogy black shales in the Swiss Alps toward the use of "magnetic isogrades". Earth and Planetary Science Letters, 84, 446-456.
    Rochette, P., Fillion, G., and Dekkers, M. J. (2011) The low-temperature magnetic transition of monoclinic pyrrhotite. The IRM Quarterly, 21(1), 1.
    Schill, E., Appel, E., and Gartam, P. (2002) Towards pyrrhotite/magnetite geothermometry in low-grade metamorphic carbonates of the Tethyan Himalayas (Shiar Khola, Central Nepal). Journal of Asian Sciences, 20, 195-201.
    Scott, S. D. (1973) Experimental calibration of the sphalerite geobarometer. Economic Geology, 68(4), 466-474.
    Scott, S. D. (1983) Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineralogical Magazine, 47, 427-435.
    Scott, S. D., and Barnes, H. L. (1971) Sphalerite geothermometry and geobarometry. Economic Geology, 66(4), 653-669.
    Scott, S. D., and Kissin, S. A. (1973) Sphalerite composition in the Zn-Fe-S system below 300°C. Economic Geology, 68(4), 475-479.
    Shaw, R. P., and Morton, R. D. (1990) A fluid inclusion study of quartzite-hosted lode gold mineralization at Athabasca Pass, Central Rocky Mountains, Canada. Economic Geology, 85(8), 1881-1893.
    Shiley, R. H., and Konopka, K. L. (1982) Effect of some metal chlorides on the transformation of pyrite to pyrrhotite. Illinois State Geological Survey.
    Sibuet, J.-C., and Hsu, S.-K. (2004) How was Taiwan created? Tectonophysics, 379(1), 159-181.
    Stanley, R. S., Hill, L. B., Chang, H. C., and Hu, H. N. (1981) A transect through the metamorphic core of the central mountains, southern Taiwan. Memoir of the Geological Society of China, 4, 443-473.
    Sugaki, A., and Shima, H. (1966) Studies on the pyrrhotite group minerals. Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 55, 242-253.
    Suppe, J., Chi, W.-R., and Namson, J. (1981) Stratigraphic record of plate interactions in Coastal Range, eastern Taiwan. Memoir of the Geological Society of China, (4), 491-530.
    Takematsu, N., Sato, Y., Okabe, S., and Usui, A. (1990) Uptake of selenium and other oxyanionic elements in marine ferromanganese concretions of different origins. Marine chemistry, 31(1), 271-283.
    Tan, L. P., Chen, C. H., Yeh, T. K., and Takeuchi, A. (1991) Tectonic and geochemical characteristics of Pleistocene gold deposits in Taiwan. Neotectonics and resources. Bellhaven Press, London, 290-305.
    Taylor, L. A. (1970) Low-temperature phase relations in the Fe-S system. Year Book -Carnegie Institution of Washington, 68, 259-270.
    Templeton, A. C., Cliffel, D. E., and Murray, R. W. (1999) Redox and fluorophore functionalization of water-soluble, tiopronin-protected gold clusters. Journal of the American Chemical Society, 121(30), 7081-7089.
    Tomkins, A. G. (2010) Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis. Geochimica et Cosmochimica Acta, 74(11), 3246-3259.
    Toulmin, P. I., and Barton, P. B. J. (1964) A thermodynamic study of pyrite and pyrrhotite. Geochimica et Cosmochimica Acta, 28, 641-671.
    Tracy, R. J., and Robinson, P. (1988) Silicate-sulfide-oxide-fluid reactions granulite-grade pelitic rocks, central Massachusetts. American Journal of Science, 288-A, 45-74.
    Tsao, S.-J., Lin, T.-C., Tien, J.-L., Chen, C.-H., Liu, T.-K., and Chen, C.-H. (1992) Illite crystallinity and fission-track ages along the East Central-Island highway of Taiwan. Acta Geologica Taiwanica, 30, 45-64.
    Urbat, M., Dekkers, M. J., and Krumsiek, K. (2000) Discharge of hydrothermal fluids through sediment at the Escanaba Trough, Gorda Ridge (ODP Leg 169): Assessing the effects on the rock magnetic signal. Earth and Planetary Science Letters, 176(3), 481-494.
    Vokes, F. M. (1969) A review of the metamorphism of sulfide deposits. Earth-Science Reviews, 5, 99-143.
    Vokes, F. M. (1971) Some aspects of the regional metamorphic mobilization of preexisting sulphide deposits. Mineralium Deposita, 6, 122-129.
    Von Gehlen, K. (1963) Pyrrhotite phase relations at low temperatures. Year Book -Carnegie Institution of Washington, 62, 213-214.
    Wagner, T., and Boyce, A. J. (2006) Pyrite metamorphism in the Devonian Hunsrück Slate of Germany: Insights from laser microprobe sulfur isotope analysis and thermodynamic modeling. American Journal of Science, 306(7), 525-552.
    Wang, G.-F. (1989) Carbonaceous material in the Ryoke metamorphic rocks, Kinki district, Japan. Lithos, 22, 305-316.
    Wang, H., and Salveson, I. (2005) A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1-xS (0 ≤ x ≤ 0.125) : Polymorphs, phase relations and transitions, electronic and magnetic structures. Phase transitions, 78(7-8), 547-567.
    Warneke, L. A., and Ernst, W. G. (1984) Progressive Cenozoic metamorphism of rocks cropping out along the Southern East-West Cross-Island Highway,Taiwan. Memoir of the Geological Society of China, 6, 105-132.
    Watson, E. B., and Cherniak, D. J. (1997) Oxygen diffusion in zircon. Earth and Planetary Science Letters, 148(3), 527-544.
    White, S. H., and Knipe, R. J. (1978) Microstructure and cleavage development in selected slates. Contributions to Mineraloby and Petrology, 66(2), 165-174.
    Whitney, D. and Evans, B. W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.
    Willett, S. D., Fisher, D., Fuller, C., and En-Chao, Y. (2003) Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology, 31(11), 945-948.
    Williamson, T. C., and Myer, G. H. (1969) A pyrrhotite-pyrite isograd in the Waterville area. Maine. Geol. Soc. America, Abs. with Programs for 1969, 237.
    Yui, T.-F. (2005) Isotopic Composition of Carbonaceous Material in Metamorphic Rocks from the Mountain Belt of Taiwan. International Geology Review, 47(3), 310-325.
    Yund, R. A., and Hall, H. T. (1969) Hexagonal and monoclinic pyrrhotites. Economic Geology, 64(4), 420-423.
    Zanazzi, P. F., Montagnoli, M., Nazzareni, S., and Comodi, P. (2007) Structural effects of pressure on monoclinic chlorite : A single-crystal study. American Mineralogist, 92, 655-661.
    何春蓀 (1986) 臺灣地質概論-臺灣地質圖說明書,第二版。經濟部中央地質調查所,164頁。
    吳曉明 (1996) 臺灣南部橫貫公路啞口至初來地區之岩石組織度及地質構造研究。國立臺灣大學地質科學研究所碩士論文,114頁。
    洪崇勝、陳國航、林俊宏 (2011) 臺灣北部橫貫公路低度變質岩之岩石磁學兼論雪山山脈與中央山脈之地層對比。經濟部中央地質調查所特刊,第25號,167-179頁
    曹恕中(1996) 台灣中央山脈變質沉積岩伊萊石結晶度、鋯石核飛跡年代和鉀氬年代之地質意義。國立台灣大學地質學研究所博士論文,共272頁
    曹恕中、樓望東、何信昌、李元希、江威德、陳正宏 (1996) 臺灣中央山脈變質泥岩鉀氬年代之地質意義。 經濟部中央地質調查所彙刊,第11號,37-84頁
    陳肇夏、朱傚祖、劉忠光、恩斯特 (1983) 臺灣變質相圖說明(第一版)。 經濟部中央地質調查所特刊,第2號,1-28頁
    陳肇夏、王京新 (1995) 臺灣變質相圖說明(第二版)。經濟部中央地質調查所特刊,第2號,1-51頁
    陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠 (1994) 材料電子顯微鏡學。 國家實驗研究院 儀器科技研究中心
    楊宏儀、黃重謀、羅遠謀 (1994) 臺灣變質地區葉蠟石等變質度線之研究。經濟部中央地質調查所彙刊,第9號。123-135頁
    顏滄波 (1984) 臺灣南部橫貫公路沿線之地質。 經濟部中央地質調查所特刊,第3號,11-23頁。

    無法下載圖示 校內:2020-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE