| 研究生: |
嚴涵誼 Yen, Han-Yi |
|---|---|
| 論文名稱: |
人類粒線體基因組維持外切酶之結構解析 Structural Study of Human Mitochondrial Genome Maintenance Exonuclease 1 |
| 指導教授: |
吳權娟
Wu, Chyuan-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | MGME1 、粒線體 DNA 、粒線體疾病 、核酸外切酶 、X 射線晶體學 |
| 外文關鍵詞: | MGME1, mitochondrial DNA, mitochondrial disease, exonuclease, X-ray crystallography |
| 相關次數: | 點閱:244 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Li, A. Q., Gao, M., Jiang, W. T., Qin, Y. & Gong, G. H. Mitochondrial Dynamics in Adult Cardiomyocytes and Heart Diseases. Front Cell Dev Biol 8, doi:ARTN 58480010.3389/fcell.2020.584800 (2020).
Scott, I. & Norris, K. L. The mitochondrial antiviral signaling protein, MAVS, is cleaved during apoptosis. Biochem Biophys Res Commun 375, 101-106, doi:10.1016/j.bbrc.2008.07.147 (2008).
Chowdhury, A., Witte, S. & Aich, A. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Front Cell Dev Biol 10, 796066, doi:10.3389/fcell.2022.796066 (2022).
Picard, M., Taivassalo, T., Gouspillou, G. & Hepple, R. T. Mitochondria: isolation, structure and function. J Physiol-London 589, 4413-4421, doi:10.1113/jphysiol.2011.212712 (2011).
Rogers, K. mitochondrion. Encyclopedia Britannica., (2021).
Yu, E. P. & Bennett, M. R. Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol Metab 25, 481-487, doi:10.1016/j.tem.2014.06.008 (2014).
Falkenberg, M. & Gustafsson, C. M. Mammalian mitochondrial DNA replication and mechanisms of deletion formation. Crit Rev Biochem Mol 55, 509-524, doi:10.1080/10409238.2020.1818684 (2020).
Dai, D. F., Rabinovitch, P. S. & Ungvari, Z. Mitochondria and cardiovascular aging. Circ Res 110, 1109-1124, doi:10.1161/CIRCRESAHA.111.246140 (2012).
Tin, A. et al. Association between Mitochondrial DNA Copy Number in Peripheral Blood and Incident CKD in the Atherosclerosis Risk in Communities Study. J Am Soc Nephrol 27, 2467-2473, doi:10.1681/Asn.2015060661 (2016).
Crovetto, F. et al. A role for mitochondria in gestational diabetes mellitus? Gynecol Endocrinol 29, 259-262, doi:10.3109/09513590.2012.736556 (2013).
Hance, N., Ekstrand, M. I. & Trifunovic, A. Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum Mol Genet 14, 1775-1783, doi:10.1093/hmg/ddi184 (2005).
Fan, L. et al. A novel processive mechanism for DNA synthesis revealed by structure, modeling and mutagenesis of the accessory subunit of human mitochondrial DNA polymerase. Journal of Molecular Biology 358, 1229-1243, doi:10.1016/j.jmb.2006.02.073 (2006).
Longley, M. J., Nguyen, D., Kunkel, T. A. & Copeland, W. C. The fidelity of human DNA polymerase gamma with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem 276, 38555-38562, doi:DOI 10.1074/jbc.M105230200 (2001).
Carrodeguas, J. A., Pinz, K. G. & Bogenhagen, D. F. DNA binding properties of human pol gammaB. J Biol Chem 277, 50008-50014, doi:10.1074/jbc.M207030200 (2002).
Korhonen, J. A., Pham, X. H., Pellegrini, M. & Falkenberg, M. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J 23, 2423-2429, doi:10.1038/sj.emboj.7600257 (2004).
Korhonen, J. A., Gaspari, M. & Falkenberg, M. TWINKLE has 5′-> 3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem 278, 48627-48632, doi:10.1074/jbc.M306981200 (2003).
Wanrooij, S. et al. Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. Proc Natl Acad Sci U S A 105, 11122-11127, doi:10.1073/pnas.0805399105 (2008).
Miralles Fuste, J. et al. In vivo occupancy of mitochondrial single-stranded DNA binding protein supports the strand displacement mode of DNA replication. PLoS Genet 10, e1004832, doi:10.1371/journal.pgen.1004832 (2014).
Farr, C. L., Wang, Y. & Kaguni, L. S. Functional interactions of mitochondrial DNA polymerase and single-stranded DNA-binding protein. Template-primer DNA binding and initiation and elongation of DNA strand synthesis. J Biol Chem 274, 14779-14785, doi:10.1074/jbc.274.21.14779 (1999).
Uhler, J. P. et al. MGME1 processes flaps into ligatable nicks in concert with DNA polymerase gamma during mtDNA replication. Nucleic Acids Res 44, 5861-5871, doi:10.1093/nar/gkw468 (2016).
Szczesny, R. J. et al. Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels. Nucleic Acids Res 41, 3144-3161, doi:10.1093/nar/gkt029 (2013).
Olahova, M. et al. POLRMT mutations impair mitochondrial transcription causing neurological disease. Nat Commun 12, 1135, doi:10.1038/s41467-021-21279-0 (2021).
Lewis, S., Hutchison, W., Thyagarajan, D. & Dahl, H. H. M. Clinical and molecular features of adPEO due to mutations in the Twinkle gene. J Neurol Sci 201, 39-44, doi:Pii S0022-510x(02)00190-9 Doi 10.1016/S0022-510x(02)00190-9 (2002).
Longley, M. J., Graziewicz, M. A., Bienstock, R. J. & Copeland, W. C. Consequences of mutations in human DNA polymerase gamma. Gene 354, 125-131, doi:10.1016/j.gene.2005.03.029 (2005).
Kornblum, C. et al. Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat Genet 45, 214-219, doi:10.1038/ng.2501 (2013).
Viscomi, C. & Zeviani, M. MtDNA-maintenance defects: syndromes and genes. J Inherit Metab Dis 40, 587-599, doi:10.1007/s10545-017-0027-5 (2017).
Berk, A. J. & Clayton, D. A. Mechanism of mitochondrial DNA replication in mouse L-cells: asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. J Mol Biol 86, 801-824, doi:10.1016/0022-2836(74)90355-6 (1974).
Gustafsson, C. M., Falkenberg, M. & Larsson, N. G. Maintenance and Expression of Mammalian Mitochondrial DNA. Annu Rev Biochem 85, 133-160, doi:10.1146/annurev-biochem-060815-014402 (2016).
Robberson, D. L., Kasamatsu, H. & Vinograd, J. Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells. Proc Natl Acad Sci U S A 69, 737-741, doi:10.1073/pnas.69.3.737 (1972).
Martens, P. A. & Clayton, D. A. Mechanism of mitochondrial DNA replication in mouse L-cells: localization and sequence of the light-strand origin of replication. J Mol Biol 135, 327-351, doi:10.1016/0022-2836(79)90440-6 (1979).
Fuste, J. M. et al. Mitochondrial RNA Polymerase Is Needed for Activation of the Origin of Light-Strand DNA Replication. Mol Cell 37, 67-78, doi:10.1016/j.molcel.2009.12.021 (2010).
Lima, W. F. et al. Human RNase H1 discriminates between subtle variations in the structure of the heteroduplex substrate. Mol Pharmacol 71, 83-91, doi:10.1124/mol.106.025015 (2007).
Prakash, A. & Doublie, S. Base Excision Repair in the Mitochondria. J Cell Biochem 116, 1490-1499, doi:10.1002/jcb.25103 (2015).
de Souza-Pinto, N. C. et al. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 8, 704-719, doi:10.1016/j.dnarep.2009.01.021 (2009).
Liu, T. C. et al. APE1 distinguishes DNA substrates in exonucleolytic cleavage by induced space-filling. Nat Commun 12, 601, doi:10.1038/s41467-020-20853-2 (2021).
Scully, R., Panday, A., Elango, R. & Willis, N. A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 20, 698-714, doi:10.1038/s41580-019-0152-0 (2019).
Bacman, S. R., Williams, S. L. & Moraes, C. T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res 37, 4218-4226, doi:10.1093/nar/gkp348 (2009).
Peeva, V. et al. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun 9, doi:ARTN 1727 10.1038/s41467-018-04131-w (2018).
Moretton, A. et al. Selective mitochondrial DNA degradation following double-strand breaks. PLoS One 12, e0176795, doi:10.1371/journal.pone.0176795 (2017).
Shokolenko, I., Venediktova, N., Bochkareva, A., Wilson, G. L. & Alexeyev, M. F. Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37, 2539-2548,
doi:10.1093/nar/gkp100 (2009).
Xu, W., Boyd, R. M., Tree, M. O., Samkari, F. & Zhao, L. Mitochondrial transcription factor A promotes DNA strand cleavage at abasic sites. Proc Natl Acad Sci U S A 116, 17792-17799, doi:10.1073/pnas.1911252116 (2019).
Podlesniy, P. et al. Accumulation of mitochondrial 7S DNA in idiopathic and LRRK2 associated Parkinson's disease. Ebiomedicine 48, 554-567, doi:10.1016/j.ebiom.2019.09.015 (2019).
Matic, S. et al. Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria. Nat Commun 9, doi:ARTN 1202 10.1038/s41467-018-03552-x (2018).
Nicholls, T. J. et al. Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease. Hum Mol Genet 23, 6147-6162, doi:10.1093/hmg/ddu336 (2014).
Pham, X. H. et al. Conserved sequence box II directs transcription termination and primer formation in mitochondria. J Biol Chem 281, 24647-24652, doi:10.1074/jbc.M602429200 (2006).
Kang, D., Miyako, K., Kai, Y., Irie, T. & Takeshige, K. In vivo determination of replication origins of human mitochondrial DNA by ligation-mediated polymerase chain reaction. J Biol Chem 272, 15275-15279, doi:10.1074/jbc.272.24.15275 (1997).
Zaher, M. S. et al. Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway. Nucleic Acids Res 46, 2956-2974, doi:10.1093/nar/gky082 (2018).
Uhler, J. P. & Falkenberg, M. Primer removal during mammalian mitochondrial DNA replication. DNA Repair (Amst) 34, 28-38, doi:10.1016/j.dnarep.2015.07.003 (2015).
Yang, C. et al. Structural insights into DNA degradation by human mitochondrial nuclease MGME1. Nucleic Acids Res 46, 11075-11088, doi:10.1093/nar/gky855 (2018).
Bai, N., Roder, H., Dickson, A. & Karanicolas, J. Isothermal Analysis of ThermoFluor Data can readily provide Quantitative Binding Affinities. Sci Rep-Uk 9, doi:ARTN 2650 10.1038/s41598-018-37072-x (2019).
校內:2027-09-23公開