簡易檢索 / 詳目顯示

研究生: 嚴涵誼
Yen, Han-Yi
論文名稱: 人類粒線體基因組維持外切酶之結構解析
Structural Study of Human Mitochondrial Genome Maintenance Exonuclease 1
指導教授: 吳權娟
Wu, Chyuan-Chuan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 76
中文關鍵詞: MGME1粒線體 DNA粒線體疾病核酸外切酶X 射線晶體學
外文關鍵詞: MGME1, mitochondrial DNA, mitochondrial disease, exonuclease, X-ray crystallography
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract I 中文摘要 III 致謝 IV Table of Contents VI List of Tables VIII List of Figures IX Abbreviation X 1 Introduction 1 1.1 The function of mitochondria 1 1.2 mtDNA and its maintenance 2 1.2.1 Key mtDNA maintaining proteins 3 1.2.2 The mechanism of mtDNA replication 5 1.2.3 mtDNA repair 7 1.2.4 Damaged-induced mtDNA degradation 8 1.3 Physiological function of MGME1 9 1.3.1 Loss-of-function of MGME1: observations from patient and knockout mice 9 1.3.2 Loss-of-function of MGME1: observations from cultured cells 10 1.3.3 The role of MGME1 in mtDNA replication 11 1.3.4 The role of MGME1 in mtDNA degradation 13 1.4 Molecular structure of MGME1 13 2 Specific Aims 16 2.1 Expression and purification of recombinant human MGME1 16 2.2 Crystallization of MGME1 in complex with a 5′-overhang DNA duplex 17 3 Materials and Methods 18 3.1 Materials 18 3.1.1 Plasmids and Constructs 18 3.1.2 Host cell lines 18 3.1.3 Synthetic oligonucleotides 18 3.1.4 Buffers and Solutions 19 3.2 Methods 19 3.2.1 protein expression 19 3.2.2 Protein purification 20 3.2.3 Crystallization 22 3.2.4 Electrophoretic mobility shift assay (EMSA) 22 3.2.5 Gel electrophoresis for examining crystal composition 23 3.2.6 Thermal shift assay 24 4 Results 26 4.1 Protein expression and purification of catalytically inactive MGME1 26 4.2 The design of DNA substrate for co-crystallization with MGME1-KH 29 4.3 X-ray crystallography 30 4.3.1 To assemble the protein-DNA complex for co-crystallization 30 4.3.2 Crystallization screen and crystal optimization 31 4.3.3 Identification of DNA crystals in some specific conditions 34 4.4 Thermal shift assay 35 5 Discussion 37 5.1 Low protein purification yield of MGME1-KH 37 5.2 Poor quality of the grown crystals 38 6 Conclusion 40 Tables 42 Figures 47 References 68 Appendix Figures 74

    Li, A. Q., Gao, M., Jiang, W. T., Qin, Y. & Gong, G. H. Mitochondrial Dynamics in Adult Cardiomyocytes and Heart Diseases. Front Cell Dev Biol 8, doi:ARTN 58480010.3389/fcell.2020.584800 (2020).

    Scott, I. & Norris, K. L. The mitochondrial antiviral signaling protein, MAVS, is cleaved during apoptosis. Biochem Biophys Res Commun 375, 101-106, doi:10.1016/j.bbrc.2008.07.147 (2008).

    Chowdhury, A., Witte, S. & Aich, A. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Front Cell Dev Biol 10, 796066, doi:10.3389/fcell.2022.796066 (2022).

    Picard, M., Taivassalo, T., Gouspillou, G. & Hepple, R. T. Mitochondria: isolation, structure and function. J Physiol-London 589, 4413-4421, doi:10.1113/jphysiol.2011.212712 (2011).

    Rogers, K. mitochondrion. Encyclopedia Britannica., (2021).

    Yu, E. P. & Bennett, M. R. Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol Metab 25, 481-487, doi:10.1016/j.tem.2014.06.008 (2014).

    Falkenberg, M. & Gustafsson, C. M. Mammalian mitochondrial DNA replication and mechanisms of deletion formation. Crit Rev Biochem Mol 55, 509-524, doi:10.1080/10409238.2020.1818684 (2020).

    Dai, D. F., Rabinovitch, P. S. & Ungvari, Z. Mitochondria and cardiovascular aging. Circ Res 110, 1109-1124, doi:10.1161/CIRCRESAHA.111.246140 (2012).

    Tin, A. et al. Association between Mitochondrial DNA Copy Number in Peripheral Blood and Incident CKD in the Atherosclerosis Risk in Communities Study. J Am Soc Nephrol 27, 2467-2473, doi:10.1681/Asn.2015060661 (2016).

    Crovetto, F. et al. A role for mitochondria in gestational diabetes mellitus? Gynecol Endocrinol 29, 259-262, doi:10.3109/09513590.2012.736556 (2013).

    Hance, N., Ekstrand, M. I. & Trifunovic, A. Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum Mol Genet 14, 1775-1783, doi:10.1093/hmg/ddi184 (2005).

    Fan, L. et al. A novel processive mechanism for DNA synthesis revealed by structure, modeling and mutagenesis of the accessory subunit of human mitochondrial DNA polymerase. Journal of Molecular Biology 358, 1229-1243, doi:10.1016/j.jmb.2006.02.073 (2006).

    Longley, M. J., Nguyen, D., Kunkel, T. A. & Copeland, W. C. The fidelity of human DNA polymerase gamma with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem 276, 38555-38562, doi:DOI 10.1074/jbc.M105230200 (2001).

    Carrodeguas, J. A., Pinz, K. G. & Bogenhagen, D. F. DNA binding properties of human pol gammaB. J Biol Chem 277, 50008-50014, doi:10.1074/jbc.M207030200 (2002).

    Korhonen, J. A., Pham, X. H., Pellegrini, M. & Falkenberg, M. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J 23, 2423-2429, doi:10.1038/sj.emboj.7600257 (2004).

    Korhonen, J. A., Gaspari, M. & Falkenberg, M. TWINKLE has 5′-> 3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem 278, 48627-48632, doi:10.1074/jbc.M306981200 (2003).

    Wanrooij, S. et al. Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. Proc Natl Acad Sci U S A 105, 11122-11127, doi:10.1073/pnas.0805399105 (2008).

    Miralles Fuste, J. et al. In vivo occupancy of mitochondrial single-stranded DNA binding protein supports the strand displacement mode of DNA replication. PLoS Genet 10, e1004832, doi:10.1371/journal.pgen.1004832 (2014).

    Farr, C. L., Wang, Y. & Kaguni, L. S. Functional interactions of mitochondrial DNA polymerase and single-stranded DNA-binding protein. Template-primer DNA binding and initiation and elongation of DNA strand synthesis. J Biol Chem 274, 14779-14785, doi:10.1074/jbc.274.21.14779 (1999).

    Uhler, J. P. et al. MGME1 processes flaps into ligatable nicks in concert with DNA polymerase gamma during mtDNA replication. Nucleic Acids Res 44, 5861-5871, doi:10.1093/nar/gkw468 (2016).

    Szczesny, R. J. et al. Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels. Nucleic Acids Res 41, 3144-3161, doi:10.1093/nar/gkt029 (2013).

    Olahova, M. et al. POLRMT mutations impair mitochondrial transcription causing neurological disease. Nat Commun 12, 1135, doi:10.1038/s41467-021-21279-0 (2021).

    Lewis, S., Hutchison, W., Thyagarajan, D. & Dahl, H. H. M. Clinical and molecular features of adPEO due to mutations in the Twinkle gene. J Neurol Sci 201, 39-44, doi:Pii S0022-510x(02)00190-9 Doi 10.1016/S0022-510x(02)00190-9 (2002).

    Longley, M. J., Graziewicz, M. A., Bienstock, R. J. & Copeland, W. C. Consequences of mutations in human DNA polymerase gamma. Gene 354, 125-131, doi:10.1016/j.gene.2005.03.029 (2005).

    Kornblum, C. et al. Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat Genet 45, 214-219, doi:10.1038/ng.2501 (2013).

    Viscomi, C. & Zeviani, M. MtDNA-maintenance defects: syndromes and genes. J Inherit Metab Dis 40, 587-599, doi:10.1007/s10545-017-0027-5 (2017).

    Berk, A. J. & Clayton, D. A. Mechanism of mitochondrial DNA replication in mouse L-cells: asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. J Mol Biol 86, 801-824, doi:10.1016/0022-2836(74)90355-6 (1974).

    Gustafsson, C. M., Falkenberg, M. & Larsson, N. G. Maintenance and Expression of Mammalian Mitochondrial DNA. Annu Rev Biochem 85, 133-160, doi:10.1146/annurev-biochem-060815-014402 (2016).

    Robberson, D. L., Kasamatsu, H. & Vinograd, J. Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells. Proc Natl Acad Sci U S A 69, 737-741, doi:10.1073/pnas.69.3.737 (1972).

    Martens, P. A. & Clayton, D. A. Mechanism of mitochondrial DNA replication in mouse L-cells: localization and sequence of the light-strand origin of replication. J Mol Biol 135, 327-351, doi:10.1016/0022-2836(79)90440-6 (1979).

    Fuste, J. M. et al. Mitochondrial RNA Polymerase Is Needed for Activation of the Origin of Light-Strand DNA Replication. Mol Cell 37, 67-78, doi:10.1016/j.molcel.2009.12.021 (2010).

    Lima, W. F. et al. Human RNase H1 discriminates between subtle variations in the structure of the heteroduplex substrate. Mol Pharmacol 71, 83-91, doi:10.1124/mol.106.025015 (2007).

    Prakash, A. & Doublie, S. Base Excision Repair in the Mitochondria. J Cell Biochem 116, 1490-1499, doi:10.1002/jcb.25103 (2015).

    de Souza-Pinto, N. C. et al. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 8, 704-719, doi:10.1016/j.dnarep.2009.01.021 (2009).

    Liu, T. C. et al. APE1 distinguishes DNA substrates in exonucleolytic cleavage by induced space-filling. Nat Commun 12, 601, doi:10.1038/s41467-020-20853-2 (2021).

    Scully, R., Panday, A., Elango, R. & Willis, N. A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 20, 698-714, doi:10.1038/s41580-019-0152-0 (2019).

    Bacman, S. R., Williams, S. L. & Moraes, C. T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res 37, 4218-4226, doi:10.1093/nar/gkp348 (2009).

    Peeva, V. et al. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun 9, doi:ARTN 1727 10.1038/s41467-018-04131-w (2018).

    Moretton, A. et al. Selective mitochondrial DNA degradation following double-strand breaks. PLoS One 12, e0176795, doi:10.1371/journal.pone.0176795 (2017).

    Shokolenko, I., Venediktova, N., Bochkareva, A., Wilson, G. L. & Alexeyev, M. F. Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37, 2539-2548,
    doi:10.1093/nar/gkp100 (2009).

    Xu, W., Boyd, R. M., Tree, M. O., Samkari, F. & Zhao, L. Mitochondrial transcription factor A promotes DNA strand cleavage at abasic sites. Proc Natl Acad Sci U S A 116, 17792-17799, doi:10.1073/pnas.1911252116 (2019).

    Podlesniy, P. et al. Accumulation of mitochondrial 7S DNA in idiopathic and LRRK2 associated Parkinson's disease. Ebiomedicine 48, 554-567, doi:10.1016/j.ebiom.2019.09.015 (2019).

    Matic, S. et al. Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria. Nat Commun 9, doi:ARTN 1202 10.1038/s41467-018-03552-x (2018).

    Nicholls, T. J. et al. Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease. Hum Mol Genet 23, 6147-6162, doi:10.1093/hmg/ddu336 (2014).

    Pham, X. H. et al. Conserved sequence box II directs transcription termination and primer formation in mitochondria. J Biol Chem 281, 24647-24652, doi:10.1074/jbc.M602429200 (2006).

    Kang, D., Miyako, K., Kai, Y., Irie, T. & Takeshige, K. In vivo determination of replication origins of human mitochondrial DNA by ligation-mediated polymerase chain reaction. J Biol Chem 272, 15275-15279, doi:10.1074/jbc.272.24.15275 (1997).

    Zaher, M. S. et al. Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway. Nucleic Acids Res 46, 2956-2974, doi:10.1093/nar/gky082 (2018).

    Uhler, J. P. & Falkenberg, M. Primer removal during mammalian mitochondrial DNA replication. DNA Repair (Amst) 34, 28-38, doi:10.1016/j.dnarep.2015.07.003 (2015).

    Yang, C. et al. Structural insights into DNA degradation by human mitochondrial nuclease MGME1. Nucleic Acids Res 46, 11075-11088, doi:10.1093/nar/gky855 (2018).

    Bai, N., Roder, H., Dickson, A. & Karanicolas, J. Isothermal Analysis of ThermoFluor Data can readily provide Quantitative Binding Affinities. Sci Rep-Uk 9, doi:ARTN 2650 10.1038/s41598-018-37072-x (2019).

    無法下載圖示 校內:2027-09-23公開
    校外:2027-09-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE