簡易檢索 / 詳目顯示

研究生: 黃士齊
Huang, Shih-Chi
論文名稱: 具蕭基金屬覆蓋層氧化銦鎵鋅薄膜電晶體紫外光響應之模擬分析
Simulation of ultraviolet photoresponse of In-Ga-Zn-O thin-film transistors with Schottky metal capping layer
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 111
中文關鍵詞: 氧化銦鎵鋅下閘極結構薄膜電晶體蕭基金屬覆蓋層紫外光感測器
外文關鍵詞: Bottom gate structure, thin film transistors, Schottky metal capping layer, IGZO, UV photodetectors
相關次數: 點閱:53下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在透過Sentaurus TCAD模擬軟體分析具蕭基金屬覆蓋層(capping layer,CL)氧化銦鎵鋅(Indium Gallium Zinc Oxide, IGZO)薄膜電晶體之紫外光(UV)響應特性,探討蕭基金屬覆蓋層對紫外光響應性能之影響。模擬結果顯示於IGZO背通道加入蕭基金屬覆蓋層可有效改善於紫外光感測器(UV photodetectors,UVPD)應用之光響應特性與減輕Idark與Iph間的消長(trade-off)問題。
    本研究針對IGZO TFT下閘極結構,利用Sentaurus TCAD進行光電模擬。於材料部分,閘極金屬採用功函數為5.0 V的金屬,介電層high-k材料選用模擬軟體內建的氧化鉿(HfO2),其相對介電常數與厚度分別為22與60 nm,SiO2等效厚度(equivalent oxide thickness, EOT)約為10 nm。本研究使用蕭基金屬覆蓋層於背通道形成一金半(MS)蕭基接面,目的在給予背通道一額外的空乏區進而使增厚的通道由原本(即無金屬覆蓋層)的部份空乏狀態轉為全空乏狀態,有效降低暗電流(Idark)。由於增加通道厚度可增加照光下產生光生載子的空間,使光電流(Iph)及元件光響應特性提升,然若僅單純增加通道厚度將使通道由增厚前的全空乏狀態變成部分空乏狀態,將導致暗電流上升。採用蕭基金屬覆蓋層可有效地改善此一問題,它可以給予通道額外的空乏區並增強其空乏能力,於不增加暗電流下,提升光電流,使Idark與Iph之間的消長問題得以解決。
    本論文內容主要分為「元件結構與材料參數對IGZO TFTs光電特性之影響」、「具蕭基金屬CL IGZO TFTs之元件光電特性之模擬分析」與「具通道蝕刻與蕭基金屬CL IGZO TFTs元件光電特性之模擬分析」等三個部分,茲依序簡述如下:
    於第一部份「元件結構與材料參數對IGZO TFTs光電特性之影響」方面,本模擬所採用傳統下閘極結構IGZO TFT通道厚度(Tch)分為四個,依序為30、40、50及60 nm,所得元件依序命名為Type A-30、Type A-40依此類推。元件靜電參數以Von 、Ion、Ioff、Ion⁄Ioff 、SS與Vth等為評估項目,光響應則以光響應度(Rph)、光靈敏度(Sph)及光檢測度(D*)做為評估依據,Rph可以評估一光檢測器光電轉換的能力,而Sph為判斷一檢測器其訊號與背景訊號之間的關係,D*則為檢測較弱能量入射光的能力。模擬結果顯示,Type A-30之元件表現出較良好的靜電特性,其Von 、Ion、Ioff、Ion⁄Ioff 、SS與Vth分別為-0.01 V、2.62×10^(-5) A、4.10×10^(-12) A、6.39×10^6、66 mV/dec以及0.35 V,隨Tch的提升,Vth逐由正轉負,至Type A-60的-0.06 V,顯示通道已從全空乏狀態轉移至部分空乏狀態。通道增厚使閘極控制力衰減,次臨界擺幅SS隨Tch增加而增大,開關性能減弱。本研究亦針對Type A-30元件進行材料參數(如通道濃度、通道缺陷密度以及閘極功函數)調變。隨通道濃度從1×10^17 cm^(-3)下降至1×10^16 cm^(-3),開啟電壓Von從原本的-0.01 V變為0.24 V,此一結果指出隨通道濃度的下降,通道之空乏區逐漸變大,導致開啟電壓上升。當Type A-30之閘極功函數從5.0 V調整為5.2 V時,開啟電壓與臨界電壓均增加0.2 V,Ioff與SS則無變化。於通道缺陷密度從1×10^17 cm^(-3)變為1×10^19 cm^(-3),臨界電壓出現右移的趨勢(0.35 V→0.39 V),間接導致元件的導通電流下降。於UV光照射下的光響應上,模擬結果顯示Type A-60因其光電流最大,擁有最高的Rph。然由於Type A-60之Ioff(1.29×10^(-10) A)最高,其Sph值僅為1.36×10^3 A/A,低於Type A-30的9.35×10^3 A/A,此一結果顯示Ioff與Iph間的消長問題。
    第二部份模擬工作聚焦於具蕭基金屬CL IGZO TFTs之元件(稱Type B TFT)光電特性之模擬分析,探討蕭基金屬CL功函數與長度(LCL)對結構參數的元件光電特性之影響並找出最適化的參數。模擬分析顯示,當CL功函數值越大時,其對於元件之空乏能力越強,於Tch=60 nm情況下,當CL之功函數為5.0 V時,其元件的光電特性最佳,基此於後續模擬中乃選用5.0 V為蕭基金屬之功函數。由於蕭基金屬CL遮蔽UV光進入通道,我們亦探討調變LCL對所增加空乏區區域大小與臨界電壓所帶來的影響,茲就下列LCL之長度(25、50、100、200、300、400與500 nm)依序將元件命名為Type B1至Type B7。模擬結果顯示,於不照光下,增大LCL可提升通道的空乏能力降低截止電流(如Type B1的1.40×10^(-12) A減小至Type B7之8.60×10^(-13) A)。然過於增加空乏區範圍,將使Vth增大與電流路徑之面積減少,降低導通電流,進而使開關電流比Ion⁄Ioff 亦隨之下降(2.58×10^7 A⁄A→2.50×10^7 A⁄A),若以開關電流比為最佳LCL之評估依據,顯然Type B5(其開關電流比達2.58×10^7 A⁄A之最高值)所使用LCL=300 nm即屬一最適化參數。然於UV光檢測器應用上,過大的LCL將影響元件的照光面積,降低光電流導致光響應特性下降。茲比較未照光下具最佳靜電特性之Type B5元件與最大化照光面積的Type B1元件兩者之光電特性,模擬結果顯示,Type B5其在250 nm之紫外光照射下之光響應度Rph僅有43.19 A⁄W,顯示其所採用300 nm之CL長度對於照光性的影響較為嚴重。相較之下,Type B1展現了較高的光響應度1325.14 A⁄W,其Sph亦高達9.21×10^4 A⁄A,顯示Type B1為一較合適的UV光檢測器。
    於檢視蕭基金屬CL之效益上,茲分別就將Type A-30與Type B1的光電特性進行比較。模擬結果顯示,Type B1之截止電流1.40×10^12 A小於Type A-30的4.10×10^(-12) A,顯示蕭基金屬CL對於抑制通道的效果表現優異。於紫外光照射下,厚度增為60 nm的Type B1 TFT因採用蕭基金屬CL解決了Type A-30礙於通道厚度的光電流限制所表現出的較低光響應(Rph=383.24 A⁄W),增加通道厚度的Type B1仍可處在全空乏狀態下,展現極佳的光響應(Rph=1325.14 A⁄W)。
    本研究亦利用通道蝕刻方式進一步提升通道厚度以提升元件光響應,第三部分之研究係以Type B TFT結構參數為基礎,以蝕刻的方式使增厚通道的中央區域減為60 nm,以利通道維持全空乏狀態。具通道蝕刻與蕭基金屬CL之元件命名為Type C TFT。所擬探討之結構參數主要為兩種,其一為未蝕刻區通道厚度,分別為150、175、200 nm,其二為兩側的未蝕刻長度,分別為150、200、250 nm,我們將其搭配成9種結構並且依序命名為Type C1至Type C9,探討其靜電特性與照光特性。Type C元件之靜電特性模擬結果顯示,隨通道厚度的提升,元件轉移特性曲線出現左移的趨勢,表示臨界電壓降低。依據Type C1、C2與C3之模擬結果,顯示隨未蝕刻長度Lside的增加,元件的導通電流有提升的趨勢,此應源自通道電流路徑的截面積之提升以及Vth降低所致。於UV光照射下,模擬結果顯示,通道厚度的增加使Type C TFT光響應度較Type B TFT呈現進一步的提升,從Type B1之1325.14 A⁄W進一步提升至Type C9之1578.77 A⁄W;另從Lside的增加可以發現,在能量較弱的紫外光波段350 nm,Type C3的光響應度比Type C1來的高,此應為整體元件通道體積增大所帶來的效益。
    本研究於具通道蝕刻與蕭基金屬CL IGZO TFTs元件光電特性之模擬分析結果證實,蕭基金屬CL於Type B TFT可提供增厚通道額外的空乏區使之處於全空乏狀態有效抑制暗電流,同時藉增厚之通道提升光電流,改善元件的光電響應特性。於採用通道蝕刻則更可以進一步提升通道厚度以增加光電流。模擬結果顯示結合通道蝕刻與蕭基金屬覆蓋層之Type C9 TFT擁有最大的開關電流比2.39×10^8 A⁄A、最高的光響應度(1578.77 A⁄W)與光靈敏度(1.37×10^6 A⁄A)。
    本研究所提出具通道蝕刻與蕭基金屬CL IGZO TFTs元件,模擬分析結果顯示蕭基金屬CL可解除傳統TFT於暗電流Ioff與光電流Iph間之消長關係,而通道蝕刻則可於維持不增加暗電流Ioff下進一步提升光電流,此在TFT於紫外光感測器的應用上具有學術性與應用性價值,對紫外光感測器產業於先進紫外光感測器之開發可提供助益。

    This study explores the use of a Schottky metal capping layer (CL) to mitigate the trade-off between dark current (Ioff) and photocurrent (Iph) in ultraviolet photodetectors (UVPDs) utilizing IGZO thin-film transistors (TFTs) through Sentaurus TCAD simulation. The IGZO channel thickness is found to be a crucial factor in influencing the photoelectric characteristics of devices. To enhance the photodetection performance of TFTs, a Schottky metal CL is applied on the back-channel surface to form a metal-semiconductor contact. Additionally, back-channel etching is also investigated to optimize channel thickness and reduce the trade-off between Ioff and Iph.
    Simulation results reveal that the Type C9 TFT, having a thickness of 60 nm for the central channel and 200 nm for unetched channel on both sides, achieves the highest on/off current ratio of 2.39×10^8 A⁄A and an excellent subthreshold swing of 111 ( mV)⁄dec in darkness. Under UV illumination, Type C9 TFT exhibits exceptional photodetection capabilities, with a photoresponsivity of 1578.77 A⁄W, photosensitivity of 1.37×10^6 A⁄A and specific detectivity of 8.22×10^14 Jones.
    The improvement is attributed to the combination of the Schottky metal CL and the back-channel etching, which increase the space available for producing photo-induced electron-hole pairs during UV illumination. These results findings indicate that IGZO TFTs with Schottky metal CL and back-channel etching structure are highly promising for advanced UVPD applications.

    中文摘要 I Abstract VII 誌謝 XIV 目錄 XV 表目錄 XVIII 圖目錄 XX 第1章 緒論 1 1-1 紫外光檢測器之應用與發展現況 1 1-2 光電晶體之介紹 3 1-3 寬能隙IGZO通道之介紹 4 1-4 背通道覆蓋層(CL)於TFTs之應用 6 1-5 背通道圖案化蝕刻於TFT之應用 8 1-6 研究動機 9 第2章 研究背景 11 2-1 薄膜電晶體之操作原理 11 2-2 TFT通道全空乏條件與靜電參數萃取 12 2-3 UV-PDs光電特性介紹與傳導機制說明 15 2-4 蕭基金屬CL抑制增厚通道暗電流之機制 18 第3章 元件結構設計與模擬軟體工具及物理模型 21 3-1 IGZO UV-PDs元件結構規劃設計 21 3-2 IGZO UV-PDs元件製程步驟 23 3-3 元件模擬分析工具與物理模型 25 3-4 照光物理模型與參數設定 28 3-5 元件結構參數與命名 29 第4章 IGZO TFT UV-PDs 未照光與照光之模擬分析 32 4-1 Type A TFT結構參數分析 32 4-1-1 通道厚度與濃度於元件特性之影響 32 4-1-2 閘極功函數於元件特性之影響 39 4-1-3 通道缺陷密度對於元件特性之影響 41 4-2 Type A TFT之紫外光響應特性 43 4-2-1 入射光波長對光響應之影響 44 4-2-2 入射光功率密度對光響應之影響 47 4-3 元件最適化結構參數探討49 第5章 具蕭基金屬 CL 結構之 IGZO TFT 模擬分析 50 5-1 蕭基金屬CL參數對元件特性之影響 51 5-1-1 蕭基金屬功函數對元件特性之影響 52 5-1-2 蕭基金屬CL長度調變對元件特性分析 54 5-2 具蕭基金屬CL結構元件光響應特性分析 58 5-3 具蕭基金屬CL最佳結構參數探討 60 5-3-1 Type A與Type B TFTs最佳結構靜電特性之比較 61 5-3-2 Type A與Type B最佳結構照光特性之比較 63 第6章 具區域蝕刻與蕭基金屬覆蓋層IGZO TFT光電特性探討 66 6-1 具蝕刻通道結構TFT元件結構參數與電特性之探討 66 6-2 Type C TFT紫外光下的表現 69 6-3 Type C TFT與Type B TFT之比較 72 第7章 結論與未來研究建議 75 7-1 結論 75 7-2 未來研究建議 77 參考文獻 81

    [1] C. E. Williamson et al., "The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems," Photochemical & Photobiological Sciences, vol. 18, no. 3, pp. 717-746, 2019.
    [2] C. G. Núñez, A. Vilouras, W. T. Navaraj, F. Liu, and R. Dahiya, "ZnO nanowires-based flexible UV photodetector system for wearable dosimetry," IEEE Sensors Journal, vol. 18, no. 19, pp. 7881-7888, 2018.
    [3] E. Munoz, E. Monroy, J. Pau, F. Calle, F. Omnes, and P. Gibart, "III nitrides and UV detection," Journal of Physics: Condensed Matter, vol. 13, no. 32, 2001, Art. no. 7115.
    [4] H. Sadeghifar and A. Ragauskas, "Lignin as a UV light blocker—a review," Polymers, vol. 12, no. 5, 2020, Art. no. 1134.
    [5] L. Roza, G. Van der Schans, and P. Lohman, "The induction and repair of DNA damage and its influence on cell death in primary human fibroblasts exposed to UV-A or UV-C irradiation," Mutation Research/DNA Repair Reports, vol. 146, no. 1, pp. 89-98, 1985.
    [6] J. Parrish, UV-A: Biological effects of ultraviolet radiation with emphasis on human responses to longwave ultraviolet. Springer Science & Business Media, 2012.
    [7] Y. Jaisin, P. Ratanachamnong, O. Wongsawatkul, A. Watthammawut, K. Malaniyom, and S. Natewong, "Antioxidant and anti-inflammatory effects of piperine on UV-B-irradiated human HaCaT keratinocyte cells," Life Sciences, vol. 263, 2020, Art. no. 118607.
    [8] F. R. de Gruijl, "[33] photocarcinogenesis: UVA vs UVB," Methods in enzymology, vol. 319, pp. 359-366, 2000.
    [9] T. M. Mata et al., "Indoor air quality: a review of cleaning technologies," Environments, vol. 9, no. 9, 2022, Art. no. 118.
    [10] I. H. Hamzavi et al., "Ultraviolet germicidal irradiation: Possible method for respirator disinfection to facilitate reuse during the COVID-19 pandemic," Journal of the American Academy of Dermatology, vol. 82, no. 6, pp. 1511-1512, 2020.
    [11] A. S. Pratiyush, S. Krishnamoorthy, R. Muralidharan, S. Rajan, and D. N. Nath, "Advances in Ga2O3 solar-blind UV photodetectors," in Gallium oxide: Elsevier, 2019, pp. 369-399.
    [12] C. An et al., "Two‐dimensional material‐enhanced flexible and self‐healable photodetector for large‐area Photodetection," Advanced Functional Materials, vol. 31, no. 22, 2021, Art. no. 2100136.
    [13] J. Herndon, R. Hoisington, and M. Whiteside, "Deadly ultraviolet UV-C and UV-B penetration to Earth’s surface: Human and environmental health implications," Journal of geography, environment and earth science International, vol. 14, no. 2, pp. 1-11, 2018.
    [14] Y. Ji, U. Jung, Z. Xian, D. Kim, J. Yu, and J. Park, "Ultraviolet photodetectors using hollow p-CuO nanospheres/n-ZnO nanorods with a pn junction structure," Sensors and Actuators A: Physical, vol. 304, 2020, Art.no. 111876.
    [15] Y. Zheng, M. N. Hasan, and J. H. Seo, "High‐performance solar blind UV photodetectors based on single‐crystal Si/β‐Ga2O3 p‐n heterojunction," Advanced Materials Technologies, vol. 6, no. 6, 2021, Art. no. 2100254.
    [16] P. Salunkhe, P. Bhat, and D. Kekuda, "Performance evaluation of transparent self-powered n-ZnO/p-NiO heterojunction ultraviolet photosensors," Sensors and Actuators A: Physical, vol. 345, 2022, Art. no. 113799.
    [17] H. Yoo, I. S. Lee, S. Jung, S. M. Rho, B. H. Kang, and H. J. Kim, "A review of phototransistors using metal oxide semiconductors: Research progress and future directions," Advanced Materials, vol. 33, 2021, no. 47, Art. no. 2006091.
    [18] S. E. Ahn et al., "Metal oxide thin film phototransistor for remote touch interactive displays," Advanced materials, vol. 24, no. 19, pp. 2631-2636, 2012.
    [19] Z. Wang, R. Lin, Y. Huo, H. Li, and L. Wang, "Formation, detection, and function of oxygen vacancy in metal oxides for solar energy conversion," Advanced Functional Materials, vol. 32, no. 7, 2022, Art. no. 2109503.
    [20] A. Hangleiter and R. Häcker, "Enhancement of band-to-band Auger recombination by electron-hole correlations," Physical Review Letters, vol. 65, no. 2, 1990, Art. no. 215.
    [21] P. Van Mieghem, "Theory of band tails in heavily doped semiconductors," Reviews of modern physics, vol. 64, no. 3, 1992, Art. no. 755.
    [22] X. Su, P. Si, Q. Hou, X. Kong, and W. Cheng, "First-principles study on the bandgap modulation of Be and Mg co-doped ZnO systems," Physica B: Condensed Matter, vol. 404, no. 12-13, pp. 1794-1798, 2009.
    [23] H. Li, J. Huang, Q. Zheng, and Y. Zheng, "Flexible ultraviolet photodetector based ZnO film sputtered on paper," Vacuum, vol. 172, 2020, Art. no. 109089.
    [24] J. Sheng et al., "Amorphous IGZO TFT with high mobility of∼ 70 cm2/(V s) via vertical dimension control using PEALD," ACS applied materials & interfaces, vol. 11, no. 43, pp. 40300-40309, 2019.
    [25] S. M. S. Al-Khazali, H. S. Al-Salman, and A. Hmood, "Low cost flexible ultraviolet photodetector based on ZnO nanorods prepared using chemical bath deposition," Materials Letters, vol. 277, 2020, Art. no. 128177.
    [26] J. Yu et al., "High-performance visible-blind ultraviolet photodetector based on IGZO TFT coupled with p–n heterojunction," ACS applied materials & interfaces, vol. 10, no. 9, pp. 8102-8109, 2018.
    [27] T. Kamiya, K. Nomura, and H. Hosono, "Electronic structure of the amorphous oxide semiconductor a‐InGaZnO4–x: Tauc–Lorentz optical model and origins of subgap states," physica status solidi (a), vol. 206, no. 5, pp. 860-867, 2009.
    [28] B. Meyer, J. Sann, D. Hofmann, C. Neumann, and A. Zeuner, "Shallow donors and acceptors in ZnO," Semiconductor Science and Technology, vol. 20, no. 4, 2005, Art. no. S62.
    [29] G. Woo et al., "Energy‐Band Engineering by Remote Doping of Self‐Assembled Monolayers Leads to High‐Performance IGZO/p‐Si Heterostructure Photodetectors," Advanced Materials, vol. 34, 2022, no. 6, Art. no. 2107364.
    [30] C.-C. Yen, A.-H. Tai, Y.-C. Liu, T.-L. Chen, C.-H. Chou, and C. Liu, "Oxygen-related reliability of amorphous InGaZnO thin film transistors," IEEE Journal of the Electron Devices Society, vol. 8, pp. 540-544, 2020.
    [31] J. W. Hennek et al., "Oxygen “getter” effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X= Ga, Sc, Y, La) transistors," Journal of the American Chemical Society, vol. 135, no. 29, pp. 10729-10741, 2013.
    [32] D. H. Lee et al., "High-Performance Oxide-Based p–n Heterojunctions Integrating p-SnO x and n-InGaZnO," ACS Applied Materials & Interfaces, vol. 13, no. 46, pp. 55676-55686, 2021.
    [33] J. Y. Lee, B.-K. Ju, and S. Y. Lee, "Effect of Tunable Sub-Source and Sub-Drain Device Behavior in Four-Terminal Operation Using Metal-Capping Thin-Film Transistors," ACS Applied Electronic Materials, vol. 5, no. 11, pp. 6189-6196, 2023.
    [34] H. Li et al., "Highly spectrum-selective ultraviolet photodetector based on p-NiO/n-IGZO thin film heterojunction structure," Optics express, vol. 23, no. 21, pp. 27683-27689, 2015.
    [35] M. D. H. Chowdhury, P. Migliorato, and J. Jang, "Light induced instabilities in amorphous indium–gallium–zinc–oxide thin-film transistors," Applied Physics Letters, vol. 97, no. 17, 2010.
    [36] C.-Y. Huang, W.-Y. Li, Y.-H. Hsiao, W.-N. Gao, and C.-J. Chen, "Trap-assisted photomultiplication in a-IGZO/p-Si heterojunction ultraviolet photodiodes," Smart Materials and Structures, vol. 29, no. 11, 2020, Art. no. 115019.
    [37] J. Lee, Y. Choi, J. Kim, M. Park, and S. Im, "Optimizing n-ZnO/p-Si heterojunctions for photodiode applications," Thin solid films, vol. 403, pp. 553-557, 2002.
    [38] C. N. Oliveira, H. J. Khoury, and E. J. Santos, "PiN photodiode performance comparison for dosimetry in radiology applications," Physica Medica, vol. 32, no. 12, pp. 1495-1501, 2016.
    [39] J. Y. Choi, S. Kim, D. H. Kim, and S. Y. Lee, "Role of metal capping layer on highly enhanced electrical performance of In-free Si–Zn–Sn–O thin film transistor," Thin Solid Films, vol. 594, pp. 293-298, 2015.
    [40] B. H. Lee, A. Sohn, S. Kim, and S. Y. Lee, "Mechanism of carrier controllability with metal capping layer on amorphous oxide SiZnSnO semiconductor," Scientific reports, vol. 9, no. 1, 2019, Art. no. 886.
    [41] Y. Yoon, Y. Kim, and M. Shin, "Impact of Channel Thickness and Doping Concentration for Normally-Off Operation in Sn-Doped β-Ga2O3 Phototransistors," Sensors, vol. 24, no. 17, 2024, Art. no. 5822.
    [42] A. Ortiz-Conde, F. G. Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, "A review of recent MOSFET threshold voltage extraction methods," Microelectronics reliability, vol. 42, no. 4-5, pp. 583-596, 2002.
    [43] X. Liang et al., "Enhanced photo-carrier transportation at semiconductor/electrolyte interface of TiO2 photoanode by oxygen vacancy engineering," Applied Surface Science, vol. 597, 2022, Art. no. 153744.
    [44] G. Konstantatos and E. H. Sargent, "Nanostructured materials for photon detection," Nature nanotechnology, vol. 5, no. 6, pp. 391-400, 2010.
    [45] I.-W. Wang, L.-C. Shih, J.-T. Li, and J.-S. Chen, "Analogy of Photogating to Voltage-Gating in Zinc-Tin Oxide Thin-Film Transistor: Efficiency and Current Saturation Mechanism," IEEE Transactions on Electron Devices, vol. 70, no. 4, pp. 1692-1696, 2023.
    [46] W. L. Morison, "Photosensitivity," New England Journal of Medicine, vol. 350, no. 11, pp. 1111-1117, 2004.
    [47] U. Stephani, U. Tauer, B. Koeleman, D. Pinto, B. A. Neubauer, and D. Lindhout, "Genetics of photosensitivity (photoparoxysmal response): a review," Epilepsia, vol. 45, pp. 19-23, 2004.
    [48] Y. Fu et al., "Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin," Proceedings of the National Academy of Sciences, vol. 102, no. 29, pp. 10339-10344, 2005.
    [49] W. Feng et al., "Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response," Journal of Materials Chemistry C, vol. 3, no. 27, pp. 7022-7028, 2015.
    [50] M. Wang et al., "Threshold voltage tuning in a-IGZO TFTs with ultrathin SnO x capping layer and application to depletion-load inverter," IEEE Electron Device Letters, vol. 37, no. 4, pp. 422-425, 2016.
    [51] Y. Li et al., "Complementary integrated circuits based on p-type SnO and n-type IGZO thin-film transistors," IEEE Electron Device Letters, vol. 39, no. 2, pp. 208-211, 2017.
    [52] K. Mashooq, J. Jo, and R. L. Peterson, "Effect of Metal Capping Layer in Achieving Record High p-Type SnO Thin Film Transistor Mobility," IEEE Transactions on Electron Devices, 2023.
    [53] Z. Liu and W. Tang, "A review of Ga2O3 deep-ultraviolet metal–semiconductor Schottky photodiodes," Journal of Physics D: Applied Physics, vol. 56, no. 9, 2023, Art. no. 093002.
    [54] G. Greco, F. Iucolano, and F. Roccaforte, "Ohmic contacts to Gallium Nitride materials," Applied Surface Science, vol. 383, pp. 324-345, 2016.
    [55] H. Sheoran, V. Kumar, and R. Singh, "A comprehensive review on recent developments in ohmic and Schottky contacts on Ga2O3 for device applications," ACS Applied Electronic Materials, vol. 4, no. 6, pp. 2589-2628, 2022.
    [56] J.-K. Ho, C.-S. Jong, C. C. Chiu, C.-N. Huang, C.-Y. Chen, and K.-K. Shih, "Low-resistance ohmic contacts to p-type GaN," Applied Physics Letters, vol. 74, no. 9, pp. 1275-1277, 1999.
    [57] R.-S. Chen, C.-C. Tang, W.-C. Shen, and Y.-S. Huang, "Thickness-dependent electrical conductivities and ohmic contacts in transition metal dichalcogenides multilayers," Nanotechnology, vol. 25, no. 41, 2014, Art. no. 415706.
    [58] H. Ferhati, F. Djeffal, and L. Drissi, "Enhanced infrared photoresponse of a new InGaZnO TFT based on Ge capping layer and high-k dielectric material," Superlattices and Microstructures, vol. 156, p. 106967, 2021.
    [59] M. Green et al., "Understanding the limits of ultrathin SiO2 and SiON gate dielectrics for sub-50 nm CMOS," Microelectronic Engineering, vol. 48, no. 1-4, pp. 25-30, 1999.
    [60] J. Xie et al., "Research progress of high dielectric constant zirconia-based materials for gate dielectric application," Coatings, vol. 10, no. 7, 2020, Art. no. 698.
    [61] W. Banerjee, A. Kashir, and S. Kamba, "Hafnium oxide (HfO2)–a multifunctional oxide: a review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories," Small, vol. 18, no. 23, 2022, Art. no. 2107575.
    [62] Y. Li, L. Zhu, C. Chen, Y. Zhu, C. Wan, and Q. Wan, "High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al2O3/HfO2 Dielectrics," Chinese Physics Letters, vol. 39, no. 11, 2022, Art. no. 118501.
    [63] A. Galca, G. Socol, and V. Craciun, "Optical properties of amorphous-like indium zinc oxide and indium gallium zinc oxide thin films," Thin Solid Films, vol. 520, no. 14, pp. 4722-4725, 2012.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE