簡易檢索 / 詳目顯示

研究生: 葉俊良
Yeh, Chun-Liang
論文名稱: PM2.5及重金屬共暴露對CKD兒童發炎反應及早期腎功能之影響
Effects of co-exposure to PM2.5 and heavy metals on inflammatory responses and early renal function in children with chronic kidney disease
指導教授: 李俊璋
Lee, Ching-Chang
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 191
中文關鍵詞: PM2.5重金屬慢性腎臟病兒童發炎因子氧化壓力腎功能指標
外文關鍵詞: PM2.5, Heavy metal, Chronic kidney disease, Children, Inflammatory factors, oxidative stress, renal function
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 慢性腎臟病(Chronic Kidney Disease, CKD)係全球性公共衛生議題,對兒童而言更可能造成生長遲緩、心血管疾病、神經發展異常與生活品質下降等長期影響。過去研究指出空氣污染與環境中的重金屬各自為成人CKD發展之潛在危險因子,然而目前針對兒童族群,尤其是處於成長發育階段且對環境污染更具敏感性的慢性腎臟病兒童,其共同暴露風險與健康影響的探討仍相對有限。特別是細懸浮微粒(PM2.5)與其所夾帶的重金屬污染物(如砷、鎘、鉛、汞、鈷與鎳)除具潛在腎毒性,可能透過氧化壓力、內皮損傷、慢性發炎及免疫調節失衡等機轉,導致腎功能惡化與組織纖維化。
    本研究旨在實地量測台灣南部地區兒童居住環境中PM2.5及其他途徑重金屬暴露情形,並探討共同暴露對腎功能、發炎反應與氧化壓力等生物指標之影響。研究期間為2021至2024年,於成功大學附設醫院小兒腎臟科門診與「台灣兒童腎臟研究合作平台(Taiwan Pediatric Renal Collaborative, TAPRC)」資料庫中招募年齡2至16歲兒童,共92位受試者簽署人體試驗同意書,分為CKD組(n=58)與對照組(n=34),分別於空污季及非空污季進行監測,共完成243人次問卷、環境監測與生物檢體採集分析。
    環境監測方面,分別於空污季及非空污季在受試者臥室與住家戶外分別架設Purple Air感測器,以連續監測一週之PM2.5濃度,並以個人式環境氣膠採樣器(Personal Environmental Monitors, PEM)於臥室採集24小時PM2.5樣本進行金屬成分分析,包括鉛(Pb)、鎳(Ni)、汞(Hg)、鎘(Cd)、砷(As)、鈷(Co)。生物檢體則收集尿液與血液樣本,檢測上述六種重金屬濃度並回推估算每日總暴露劑量(μg/kg/day)以及腎功能與損傷指標包含eGFR(Schwartz與U-25)、Cystatin C、Creatinine、PCR(Protein-to-Creatinine Ratio)與ACR(Albumin-to-Creatinine Ratio)等,腎小管損傷指標則包含KIM-1(Kidney Injury Molecule-1)、EGF(Epidermal Growth Factor)與α1m(α1-microglobulin),發炎反應指標為TNFR-1(Tumor Necrosis Factor Receptors-1)、TNFR-2(Tumor Necrosis Factor Receptors-2)、MCP-1(Monocyte Chemoattractant Protein-1)與IL-6(Interleukin-6),氧化壓力指標包括8-OHdG(8-hydroxy-2'-deoxyguanosine)與MDA(Malondialdehyde)。統計分析方法包括描述性統計與Weighted Quantile Sum(WQS)迴歸分析,以評估PM2.5與重金屬共暴露對生物指標變異之貢獻性。
    結果顯示,PM2.5濃度於空污季顯著高於非空污季,臥室平均濃度為28.6μg/m³。鉛與鎳為PM2.5樣本中主要檢出金屬。CKD組與對照組間,在eGFR(Schwartz與U-25)、Cystatin C與EGF等腎功能指標上皆有顯著差異,EGF於非空污季顯著下降,顯示其為早期腎小管損傷之敏感指標。TNFR-1與TNFR-2於CKD組顯著上升,顯示有發炎反應活化之現象,然而MCP-1與IL-6則未顯著變化,可能與受試者處於病程初期或暴露劑量偏低有關。8-OHdG與MDA之差異亦未達統計顯著,然趨勢上在CKD組略高。
    進一步以羅吉斯迴歸、多元線性迴歸與WQS迴歸進行分析。結果顯示:在人口學方面,年齡、BMI與多項腎功能與發炎反應、氧化壓力指標顯著相關;居住屋齡亦與腎功能與發炎指標相關。環境暴露方面,CKD組之空氣中金屬與PM2.5多不顯著;對照組中PM2.5與eGFR及TNF-R1/-R2顯著相關。另外,比起環境暴露,體內金屬濃度更能穩定反映暴露與健康之相關性,其中血中鉛與蛋白尿指標(PCR、ACR)呈顯著正相關;尿中砷與PCR、ACR、Cystatin C、發炎指標(hsCRP、TNF-R2、MCP-1)呈顯著正相關;尿中鎳與eGFR、PCR、ACR、Cystatin C、MCP-1等指標呈顯著正相關;尿中汞與8-OHdG呈顯著正相關;尿中鈷與TNF-R2、MCP-1呈顯著正相關。多元線性迴歸分析結果亦顯示PM2.5中鎳與eGFR呈顯著負相關,而與Cystatin C及TNF-R1呈顯著正相關。WQS迴歸分析結果顯示尿液中重金屬共暴露以尿中汞為主要影響氧化壓力指標(8-OHdG)之貢獻者,尿中鎳則與腎絲球及蛋白尿指標最為相關,尿中砷亦與發炎指標及腎功能指標相關;血液中重金屬共暴露之分析結果顯示,血中鎘與α1m及TNF-R1相關,血中鉛對MDA之影響最具貢獻性。短期生物監測指標與每日攝取劑量之金屬共暴露分析結果顯示,汞及鎳為影響生物指標之主要貢獻者,反映其毒性對CKD兒童健康之潛在影響,亦顯示CKD兒童對環境污染具更高的生理敏感性,應列為優先監測與防護對象。針對兒童、特別是慢性疾病族群加強多重污染物共暴露監測,並強化室內空氣品質改善,將有助於降低其對人體所造成之危害。

    The present study evaluated the effects of co-exposure to fine particulate matter (PM2.5) and heavy metals on kidney function, inflammation, and oxidative stress in children with chronic kidney disease (CKD) and control group. A total of 92 children aged 2–16 years (58 with CKD, 34 controls) were recruited in southern Taiwan. Environmental PM2.5 sampling was conducted at each participant’s home including indoor/outdoor PM2.5 monitoring and analysis of heavy metals such as arsenic (As), cadmium (Cd), mercury (Hg), and nickel (Ni). Blood and urine samples were analyzed for renal biomarkers (eGFR, Cystatin C), tubular injury markers (EGF, KIM-1), inflammatory cytokines (TNFR-1/2, hsCRP), and oxidative stress indicators (8-OHdG, MDA), respectively.
    Results of the analysis of short-term biodetection exposure indicators and daily intake doses showed consistent evidence. These results also showed that co-exposure to heavy metals was significantly correlated with multiple biological indicators such as 8-OHdG, PCR, ACR, eGFR, EGF, MCP-1, and TNF-R1, with urinary mercury, urinary nickel, blood cadmium, and blood lead as the main contributors. In addition, the results of the daily intake dose analysis revealed significant correlations with most indicators, with mercury and nickel as the main contributors.
    The present study provides significant evidence that specific heavy metals’ co-exposure contribute to early renal impairment in children, particularly in CKD patients. These findings highlight that targeted pollution control, improved indoor air quality, and early intervention strategies to protect vulnerable pediatric populations from environmental nephrotoxicity is needed.

    摘要 I Extend Abstract III 致謝VII 目錄IX 表目錄XII 圖目錄XIV 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 3 1-3 研究意義 3 第二章 文獻回顧 4 2-1 兒童慢性腎臟疾病 4 2-1-1 流行病學資料 4 2-1-2 慢性腎臟病之病因 4 2-1-3 慢性腎臟病相關致病機制 5 2-1-4-1 腎功能指標 6 1 胱蛋白C(Cystatin C)6 2 高敏度C-反應蛋白(High sensitivity C-Reactive Protein, hs-CRP) 6 2-1-4-2 腎小管健康相關指標 7 1 腎臟損傷分子(Kidney Injury Molecule-1, KIM-1)7 2 內皮生長因子(Epidermal growth factor, EGF)7 3 α1-微球蛋白(Alpha-1-microglobulin, α1-MG)8 2-1-4-3 發炎反應指標 8 1 腫瘤壞死因子受體1& 2(Tumor necrosis factor receptor 1 & 2)9 2 單核細胞趨化蛋白-1(Monocyte Chemoattractant Protein-1) 9 3 C-反應蛋白(C-reactive protein, CRP)9 4 白血球介素-6(Interleukin 6, IL-6)10 2-1-4-4 氧化壓力指標 10 1 8-羥基去氧鳥苷(8-hydroxy-2-deoxyguanosine, 8-OHdG)10 2 丙二醛(Malondialdehyde, MDA) 11 2-2 細懸浮微粒 11 2-2-1 細懸浮微粒之組成及來源 11 2-2-2 細懸浮微粒對人體健康之影響 12 2-2-3 細懸浮微粒與慢性腎臟病 12 2-3 重金屬對人體健康之影響 13 2-3-1 重金屬對人體健康之影響 13 2-3-2 細懸浮微粒中的重金屬 14 2-3-2-1 鎘(Cd)14 2-3-2-2 鉛(Pb)15 2-3-2-3 砷(As)16 2-3-2-4 汞(Hg)17 2-3-2-5 鈷(Co)18 2-3-2-6 鎳(Ni)19 第三章 材料與方法 21 3-1 研究架構 21 3-2 家戶及研究對象之招募、納入與排除條件 21 3-3 室內環境中PM2.5及重金屬暴露來源調查與兒童健康評估標準化問卷 23 3-4 檢體採樣策略與分析方法 24 3-4-1 兒童尿液樣本之採集與分析方法 24 3-4-2 重金屬日攝取劑量之評估 26 3-4-3兒童血液樣本之採集與分析方法 26 3-5 細懸浮微粒(PM2.5)及其所含重金屬濃度之家戶實地採樣與分析方法 28 3-5-1 家戶PM2.5濃度實地監測與儀器校正 28 3-5-2 PM2.5及其重金屬之採樣與品質控制 29 3-5-3 PM2.5中重金屬分析與濃度計算 29 3-5-4 PM2.5中重金屬分析之品保品管規範 30 3-6 資料處理與統計分析 32 第四章 結果與討論 34 4-1 受試者基本資料、疾病史及居住環境特徵 34 4-1-1 受試者基本資料 34 4-1-2 受試者疾病史 35 4-2 受試者居住環境中PM2.5及其中重金屬之濃度分布 35 4-2-1 受試者居住環境中PM2.5之濃度分布 36 4-2-2 受試者居住環境中PM2.5中重金屬之濃度分布 36 4-3 受試者檢體中重金屬之濃度分布 37 4-3-1 受試者血液檢體中重金屬之濃度分布 37 4-3-2 受試者尿液檢體中重金屬之濃度分布 38 4-4 受試者腎功能指標檢測結果 38 4-4-1 血液腎功能指標 39 4-4-2 尿液腎功能指標 40 4-5 受試者慢性腎臟病生物偵測指標檢測結果 40 4-5-1 受試者腎小管健康指標 40 4-5-2 受試者發炎反應指標 41 4-6 人口學及採樣檢體與腎功能、氧化壓力及發炎反應之相關性 42 4-6-1 人口學與腎功能、氧化壓力及發炎反應指標之相關性 42 4-6-2 採樣檢體與腎功能、氧化壓力及發炎反應指標之相關性 42 4-7 羅吉斯迴歸分析-採樣檢體與腎功能、發炎反應與氧化壓力指標之相關性 44 4-7-1PM2.5及空氣中金屬與腎功能、發炎反應與氧化壓力指標之相關性 44 4-7-2尿液和血液中金屬與腎功能、發炎反應與氧化壓力指標之相關性…44 4-8多元線性迴歸分析-採樣檢體與腎功能、發炎反應與氧化壓力指標之相關..45 4-8-1 PM2.5及空氣中金屬與血液中金屬之相關性 45 4-8-2生活環境與飲食對尿液及血液中重金屬之相關性 46 4-8-3 PM2.5及空氣中金屬與腎功能、發炎反應與氧化壓力指標之相關性 46 4-8-4尿液及血液中金屬與腎功能、發炎反應與氧化壓力指標之相關性 46 4-9 WQS迴歸分析-採樣檢體與腎功能、氧化壓力及發炎反應指標之相關性 48 4-9-1 空氣中金屬對腎功能、發炎反應與氧化壓力指標影響之相關性 48 4-9-2 尿液中重金屬對腎功能、發炎反應與氧化壓力指標影響之相關性 48 4-9-3血液中重金屬對腎功能、發炎反應與氧化壓力指標影響之相關性 49 4-9-4以生物偵測暴露指標考量對腎功能、發炎反應與氧化壓力指標影響之 相關性 49 4-9-5生物偵測短期暴露指標對腎功能、發炎反應與氧化壓力指標影響之相 關性 49 4-9-6生物偵測長期暴露指標對腎功能、發炎反應與氧化壓力指標影響之相 關性 51 4-9-7重金屬每日攝取劑量對腎功能、發炎反應與氧化壓力指標影響之相關 性 52 第五章 結論與建議 55 5-1 結論 55 5-2 建議 56 研究限制 57 參考文獻 58

    Achilleos, S., Kioumourtzoglou, M.-A., Wu, C.-D., Schwartz, J. D., Koutrakis, P., & Papatheodorou, S. I. (2017). Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis. Environment International, 109, 89–100. https://doi.org/10.1016/j.envint.2017.09.010
    Al-Badry, S. H., Al-Khafaji, S. M., & Al-Mudhaffer, A. M. (2023). The role of oxidative stress in patients with chronic kidney disease. Wiadomości Lekarskie, 76(5), 951–955. https://doi.org/10.36740/WLek202305110
    Al-Katib, S., Shetty, M., Jafri, S. M. & Jafri, S. Z. Radiologic assessment of native renal vasculature: A multimodality review. Radiographics 37(1), 136–156 (2017).
    Agency for Toxic Substances and Disease Registry. (2020). Toxicological profile for lead. U.S. Department of Health and Human Services. https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf
    Agency for Toxic Substances and Disease Registry. (1999). Toxicological profile for mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
    Agency for Toxic Substances and Disease Registry. (2005). Toxicological profile for nickel. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
    Agency for Toxic Substances and Disease Registry. (2007). Toxicological profile for arsenic. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
    Agency for Toxic Substances and Disease Registry. (2012). Toxicological profile for cadmium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
    Agency for Toxic Substances and Disease Registry. (2020). Toxicological profile for lead. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
    Agency for Toxic Substances and Disease Registry. (2022). Toxicological profile for mercury (update). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
    Apostoli, P., Catalani, S., 2011. Metal ions affecting reproduction and development. Met. Ions Life Sci. 8, 263–303. https://europepmc.org/article/MED/21473384
    Aztatzi-Aguilar, O. G., Uribe-Ramírez, M., Arias-Montano, J. A., Barbier, O., & De Vizcaya-Ruiz, A. (2016). Acute and subchronic exposure to air particulate matter induces expression of systemic cytokines in mice. Toxicology Letters, 240(2), 198–207. https://doi.org/10.1016/j.toxlet.2015.10.017
    Azukaitis, K., Ju, W., Kirchner, M., Hodgin, J., Bitzan, M., Eichinger, F., Sanna-Cherchi, S., Sampson, M. G., Antignac, C., Parekh, R., Reidy, K. J., Warady, B. A., Kretzler, M., & Schaefer, F. (2019).Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children. Kidney International, 96(1), 214–221. https://doi.org/10.1016/j.kint.2019.01.028
    Bazzi, C., Petrini, C., Rizza, V., Arrigo, G., Beltrame, A., Pisano, L., D’Amico, G. (2001). Urinary excretion of IgG and α1-microglobulin predicts clinical course better than proteinuria in IgA nephropathy. American Journal of Kidney Diseases, 38(4), 728–736. https://doi.org/10.1053/ajkd.2001.27690
    Becherucci, F., Roperto, R. M., Materassi, M., & Romagnani, P. (2016). Chronic kidney disease in children. Clinical Kidney Journal, 9(4), 583–591. https://doi.org/10.1093/ckj/sfw047
    Benjelloun, M., Tazi, E. M., Elfazazi, H., & Badre, W. (2007). Chronic lead nephropathy: A ‘forgotten’ cause of renal disease. Saudi Journal of Kidney Diseases and Transplantation, 18(1), 83–86. https://pubmed.ncbi.nlm.nih.gov/17237897
    Bello, A. K., Alrukhaimi, M., Ashuntantang, G. E., Basnet, S., Rotter, R. C., Douthat, W. G., Kazancioglu, R., Köttgen, A., Nangaku, M., Powe, N. R., White, S. L., Wheeler, D. C., & Moe, O. (2017). Complications of chronic kidney disease: Current state, knowledge gaps, and strategy for action. Kidney International Supplements, 7(2), 122–129. https://doi.org/10.1016/j.kisu.2017.07.007
    Bernard, A., 2004. Renal dysfunction induced by cadmium: biomarkers of critical effects. Biometals 17 (5), 519–523. https://europepmc.org/article/MED/15688856
    Bernhoft, R. A. (2012). Mercury toxicity and treatment: a review of the literature. J. Environ. Public Health 2012, 460508. doi:10.1155/2012/460508
    Bhatraju, P. K., Zelnick, L. R., Shlipak, M., Katz, R. & Kestenbaum, B. Association of soluble TNFR-1 concentrations with long-term decline in kidney function: The multi-ethnic study of atherosclerosis. J. Am. Soc. Nephrol.29, 2713–2721. https://pubmed.ncbi.nlm.nih.gov/30287518/
    Blum MF, Surapaneni A, Stewart JD, Liao D, Yanosky JD, Whitsel EA, Grams ME (2020) Particulate matter and albuminuria, glomerular filtration rate, and incident CKD. Clin J Am Soc Nephrol 15(3):311–319. https://doi.org/10.2215/CJN.08350719
    Bokenkamp A, Domanetzki M, Zinck R, Schumann G, Byrd D, Brodehl J (1998) Cystatin C—a new marker of glomerular filtration rate in children independent of age and height. Pediatrics 101:875–881
    Bonventre, J. V. (2007). Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrology Dialysis Transplantation, 22(11), 3265–3268. https://doi.org/10.1093/ndt/gfm437
    Borm PJA, Kelly F, Kunzli N, Schins RPF, Donaldson K. Oxidant generation by particulate matter:from biologically effective dose to a promising, novel metric. Occup Environ Med. 2007; 64:73–74.[PubMed: 17272658]
    Bowe, B., Xie, Y., Li, T., Yan, Y., Xian, H., Balasubramanian, S., & Al-Aly, Z. (2017). The 2016 global and national burden of chronic kidney disease attributable to ambient fine particulate matter air pollution: A modelling study. BMJ Global Health, 2(2), e000453. https://doi.org/10.1136/bmjgh-2017-000453
    Bowe, B., Xie, Y., Li, T., Yan, Y., Xian, H., & Al-Aly, Z. (2018). Particulate matter air pollution and the risk of incident CKD and progression to ESRD. Journal of the American Society of Nephrology, 29(1), 218–230. https://doi.org/10.1681/ASN.2017030253
    Busso, I. T., Mateos, A. C., Garro, H. A., Ramos, M. V., Aranguren, F., & Sanchez, R. A. (2018). Inhalation of urban air pollution particulate matter aggravates renal disease in rats. Toxicology Letters, 295, 79–86. https://doi.org/10.1016/j.toxlet.2018.05.034
    Boyd, A. S., Seger, D., Vannucci, S., Langley, M., Abraham, J. L., & King, L. E. (2000). Mercury exposure and cutaneous disease. Journal of the American Academy of Dermatology, 43(1), 81–90. https://doi.org/10.1067/mjd.2000.106360
    Branca, J.J.V., Morucci, G., Pacini, A., 2018. Cadmium-induced neurotoxicity: Still much ado. Neural Regen Res. https://pubmed.ncbi.nlm.nih.gov/30233056/
    Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360:1233–1242. https://pubmed.ncbi.nlm.nih.gov/12401268/
    C. Shen, K. Zhang, J. Yang, J. Shi, C. Yang, Y. Sun, W. Yang, Association between metal(loid)s in serum and leukemia: a systematic review and meta-analysis, J Environ Health Sci Eng 21 (1) (2023) 201–213.
    Chan, T.-C., Zhang, Z., Lin, B.-C., Lin, C., Deng, H.-B., Chuang, Y.-C., Chang, L.-Y., Chiang, P.-H., Wu, C.-D., Lung, S.-C. C., Guo, Y. L., & Tam, T. (2018). Long-term exposure to ambient fine particulate matter and chronic kidney disease: A cohort study. Environmental Health Perspectives, 126(10), 107002. https://doi.org/10.1289/EHP3304
    Collins, A. J., Foley, R. N., Gilbertson, D. T., & Chen, S. C. (2013). United States renal data system public health surveillance of chronic kidney disease and end-stage renal disease. Kidney International Supplements, 3(1), 50–56. https://doi.org/10.1038/kisup.2012.74
    Application of biochar to soil reduces cancer risk via rice consumption: A case study in Miaoqian village, Longyan. China. Environ. Int. 68, 154–161. https://www.sciencedirect.com/science/article/abs/pii/S0160412014000907
    Cavaillon JM, Poignet JL, Fitting Cet al.Serum interleukin-6 in long-termhemodialyzed patients.Nephron1992;60: 307–313. https://www.semanticscholar.org/paper/Serum-interleukin-6-in-long-term-hemodialyzed-Cavaillon-Poignet/5097eaf2d0ef00951843c6dd1a1dba39c84329ae
    Cesari M, Penninx BW, Newman ABet al.Inflammatory markers and onset of cardiovascular events: results from the Health ABC study.Circulation 2003;108: 2317–2322.
    Chang, L. et al. Recent progress in research on PM(2.5) in subways. Environ. Sci. Process Impacts 23(5), 642–663 (2021).
    Chen J (2007) Rapid urbanization in China: a real challenge to soil protection and food security. Catena 69:1–15. https://doi.org/10.1016/j.catena.2006.04.019
    Chen Y, Liu S, Wu L, Liu Y, Du J, Luo Z, et al. Epigenetic regulation of chemokine (CC-motif) ligand 2 in inflammatory diseases.Cell Prolif(2023) 56(7):e13428. doi:10.1111/cpr.13428
    Children’s Hospital Colorado. (2024). Chronic Kidney Disease in Children: Advances in Diagnosis and Risk Assessment. Retrieved from https://www.childrenscolorado.org/advances-answers/recent-articles/chronic-kidney-disease/
    Choi, J. Y., Bae, J.-E., Kim, J. B., Jo, D. S., Park, N. Y., Kim, Y. H., Lee, H. J., Kim, S. H., Kim, S. H., Jeon, H. B., Na, H.-W., Choi, H., Ryu, H.-Y., Ryoo, Z. Y., Lee, H.-S., & Cho, D.-H. (2021). 2-IPMA Ameliorates PM2.5-Induced Inflammation by Promoting Primary Ciliogenesis in RPE Cells. Molecules, 26(17), 5409. https://doi.org/10.3390/molecules26175409
    Cianci R, Simeoni M, Cianci E, De Marco O, Pisani A, Ferri C, et al. Stem cells in kidney ischemia: from inflammation and fibrosis to renal tissue regeneration.Int J MolSci(2023) 24(5):4631. doi:10.3390/ijms24054631
    Clancy, H. A., Sun, H., Passantino, L., Kluz, T., Muñoz, A., Zavadil, J., et al. (2012). Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics 4 (8), 784–793. doi:10.1039/c2mt20074k
    Cobbina, S. J., Chen, Y., Zhou, Z., Wu, X., Zhao, T., Zhang, Z., et al. (2015). Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. J. Hazard. Mater. 294, 109–120. doi:10.1016/j.jhazmat.2015. 03.057
    Cooke MS, Evans MD, Herbert KE, Lunec J (2000) Urinary 8-oxo-2′-deoxyguanosine—source, significance and supplements. Free Radic Res 32:381–397
    Correia AW, Pope CA, Dockery DW, Wang Y, Ezzati M, Dominici F. Effect of Air Pollution Control on Life Expectancy in the United States An Analysis of 545 US Counties for the Period from 2000 to 2007. Epidemiology. 2013; 24:23–31. [PubMed: 23211349]
    Costa, M. (2019). Review of arsenic toxicity, speciation and polyadenylation of canonical histones. Toxicol. Appl. Pharmacol. 375, 1–4. doi:10.1016/j.taap.2019. 05.006
    Crespo-López, M. E., Macêdo, G. L., Pereira, S. I. D., Arrifano, G. P. F., Picanço-Diniz, D. L. W., do Nascimento, J. L. M., & Herculano, A. M. (2009). Mercury and human genotoxicity: Critical considerations and possible molecular mechanisms. Pharmacological Research, 60(3), 212–220. https://doi.org/10.1016/j.phrs.2009.02.011
    David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447:941–950
    De Foy B, Smyth AM, Thompson SL, Gross DS, Olson MR, Sager N, Schauer JJ. Sources of nickel, vanadium and black carbon in aerosols in Milwaukee. Atmospheric Environment. 2012; 59:294–301
    Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226
    Dietert, R.R., Lee, J.-E., Hussain, I., Piepenbrink, M., 2004. Developmental immunotoxicology of lead. Toxicol. Appl. Pharmacol. 198 (2), 86–94. https://www.sciencedirect.com/science/article/abs/pii/S0041008X04000511
    Dockery DW, Pope CA, Xu XP, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE. AnAssociated Between Air Pollution and Mortality in 6 United States Cities. N Engl J Med. 1993;329:1753–1759. [PubMed: 8179653]
    Domingo, J. L. (1989). Cobalt in the environment and its toxicological implications. Reviews of Environmental Contamination and Toxicology, 108, 105–132. https://pubmed.ncbi.nlm.nih.gov/2646660/
    Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, Samet JM (2006) Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295:1127–1134. https://doi.org/10.1001/jama.295.10.1127
    Donaldson, M. D. C., Matthew, D. J., McWilliam, R. C., & Smith, G. N. (1989). Stability of alpha 1-microglobulin, beta 2-microglobulin and retinol binding protein in urine. Clinica Chimica Acta, 179(1), 73–77. https://pubmed.ncbi.nlm.nih.gov/2465849/
    Donham KJ. Hazardous Agents in Agricultural Dusts and Methods of Evaluation. Am J Ind Med. 1986; 10:205–220. [PubMed: 3532776]
    Dzienis-Straczkowska, S. et al. Soluble tumor necrosis factor-alpha receptors in young obese subjects with normal and impaired glucose tolerance. Diabetes Care26, 875–880. https://pubmed.ncbi.nlm.nih.gov/12610052/
    Eknoyan, G., Lameire, N., Barsoum, R., Eckardt, K. U., Levin, A., Levin, N., Locatelli, F., MacLeod, A., Vanholder, R., Walker, R., & Wang, H. (2004). The burden of kidney disease: Improving global outcomes. Kidney International, 66(4), 1310–1314. https://doi.org/10.1111/j.1523-1755.2004.00894.x
    Farmand, F., Ehdaie, A., Roberts, C.K., Sindhu, R.K., 2005. Lead-induced dysregulation of superoxide dismutases, catalase, glutathione peroxidase, and guanylate cyclase. Environ. Res. 98 (1), 33–39. https://pubmed.ncbi.nlm.nih.gov/15721881/
    Faroon, O., & Keith, S. (2004). Toxicological profile for cobalt. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR). https://www.atsdr.cdc.gov/toxprofiles/tp33.pdf
    Faroon, O., and Keith, S. (2004). Toxicological profile for cobalt.
    Feng, S., Gao, D., Liao, F., Zhou, F., & Wang, X. (2022). The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety, 231, 113203. https://www.sciencedirect.com/science/article/abs/pii/S014765131630029X
    Fernandes Azevedo, B., Barros Furieri, L., Peçanha, F. M., Wiggers, G. A., Frizera Vassallo, P., Ronacher Simões, M., et al. (2012). Toxic effects of mercury on the cardiovascular and central nervous systems. Biomed. Res. Int. 2012, 949048. doi:10.1109/latincloud.2012.6508156
    Filler G, Priem F, Lepage N, Sinha P, Vollmer I, Clark H, Keely E, Matzinger M, Akbari A, Althaus H, Jung K (2002) Beta-trace protein, cystatin C, beta(2)-microglobulin, and creatinine compared for detecting impaired glomerular filtration rates in children. Clin Chem 48:729–736
    Filler G, Witt I, Priem F, Ehrich JHH, Jung K (1997) Are cystatin C and beta-2-microglobulin better markers than serum creatinine for prediction of a normal glomerular filtration rate in pediatric subjects? Clin Chem 43:1077–1078
    Friberg, L., Kjellström, T., Elinder, C.-G., Nordberg, G.F., 2019. Cadmium and health: a toxicological and epidemiological appraisal. Cadmium Heal. A Toxicol. Epidemiol. Apprais. https://doi.org/10.1201/9780429260599.
    Fu, Q., Sen Li., Lu Xu., Na Gao., Weiqi Wu., Qintao Xu., Yuping Huang., Xiaoliu Huang ., Yushan Huang (2023). Subchronic exposure to PM2.5 induced renal function decline via intestinal ecological disorders. Ecotoxicol Environ Safety. https://pubmed.ncbi.nlm.nih.gov/37944465/
    Galipeau J. Macrophages at the nexus of mesenchymal stromal cell potency: The Emerging role of chemokine cooperativity.Stem Cells(2021) 39(9):1145–54.doi:10.1002/stem.3380
    Garcia-Esquinas, E., Pollán, M., Umans, J. G., Francesconi, K. A., Goessler, W., Guallar, E., ... & Navas-Acien, A. (2013). Arsenic exposure and cancer mortality in a US-based prospective cohort: the Strong Heart Study. ISEE Conference Abstracts, 2013(1), 3037.
    Garza-Lombó, C., Pappa, A., Panayiotidis, M. I., Gonsebatt, M. E., & Franco, R. (2019). Arsenic-induced neurotoxicity: A mechanistic appraisal. Journal of Biological Inorganic Chemistry, 24(8), 1305–1316. https://doi.org/10.1007/s00775-019-01740-8
    Gazwi, H. S. S., Yassien, E. E., and Hassan, H. M. (2020). Mitigation of lead neurotoxicity by the ethanolic extract of Laurus leaf in rats. Ecotoxicol. Environ. Safe 192, 110297. doi:10.1016/j.ecoenv.2020.110297
    Genchi, G., Carocci, A., Lauria, G., Sinicropi, M.S., Catalano, A., 2020. Nickel: Human health and environmental toxicology. Int. J. Environ. Res. Public Health 17 (3), 679. https://doi.org/10.3390/ijerph17030679.
    Ghorani-Azam, A., Riahi-Zanjani, B., and Balali-Mood, M. (2016). Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci., 21, 65. doi:10.4103/1735-1995.189646
    Gohda, T., Murakoshi, M., Shibata, T., Suzuki, Y., et al. (2024). Circulating TNF receptor levels are associated with estimated glomerular filtration rate even in healthy individuals with normal kidney function. Scientific Reports, 14(1), 7245. DOI: 10.1038/s41598-024-57265-x
    Gohda, T. et al. Clinical predictive biomarkers for normoalbuminuric diabetic kidney disease. Diabetes Res. Clin. Pract.141, 62–68. https://pubmed.ncbi.nlm.nih.gov/29729375/
    Gohda, T. & Tomino, Y. Novel biomarkers for the progression of diabetic nephropathy: soluble TNF receptors. Curr. Diab. Rep. 13, 560–566. https://doi.org/10.1007/s11892-013-0385-9 (2013).
    Gohda, T. et al. Association between kidney function decline and baseline TNFR levels or change ratio in TNFR by febuxostat chiefly in non-diabetic CKD patients with asymptomatic hyperuricemia. Front. Med.8, 634932. https:// doi. org/ 10. 3389/ fmed.2021. 634932 (2021).
    Gohda, T. et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J. Am. Soc. Nephrol.23, 516–524. https://pubmed.ncbi.nlm.nih.gov/22266664/
    Gohda, T. et al. Concept of diabetic kidney disease: Paradigm shift from albuminuria-based to GFR-based kidney disease. Juntendo Med. J. 65, 510–516. https://doi.org/10.14789/jmj.2019.65.JMJ19-R16 (2019).
    Gonzalvo, M. C., Gil, F., Hernández, A. F., Villanueva, E., & Pla, A. (1997). Inhibition of paraoxonase activity in human liver microsomes by exposure to EDTA, metals and mercurials. Chemico-Biological Interactions, 105(3), 169–179.
    Gorini, F., Muratori, F., and Morales, M. A. (2014). The role of heavy metal pollution in neurobehavioral disorders: a focus on autism. Rev. J. Autism Dev. Disord. 1 (4), 354–372. doi:10.1007/s40489-014-0028-3
    Goyer, R.A., 1989. Mechanisms of lead and cadmium nephrotoxicity. Toxicol. Lett. 46 (1-3), 153–162. https://pubmed.ncbi.nlm.nih.gov/2650022/.
    Greenbaum LA, Warady BA, Furth SL (2009) Current advances in chronic kidney disease in children: growth, cardiovascular, and neurocognitive risk factors. Semin Nephrol 29:425–434
    Greenberg JH, Abraham AG, Xu Y, SchellingJR,Feldman HI,Sabbisetti VS,etal.Urine biomarkers of kidney tubule health, injury, and inflammation are associated with progression of CKD in children.JAmeSon Nephrol(2021) 32(10):2664–77. doi:10.1681/asn.2021010094
    Guan, W. J., Zheng, X. Y., Chung, K. F. & Zhong, N. S. Impact of air pollution on the burden of chronic respiratory diseases in China: Time for urgent action. Lancet 388(10054), 1939–1951 (2016).
    Gworek, B., Dmuchowski, W., & Baczewska-Dąbrowska, A. H. (2020). Mercury in the terrestrial environment: A review. Environmental Sciences Europe, 32, 128. https://doi.org/10.1186/s12302-020-00401-x
    Ge, C., Ma, Y., Shi, Y., Liao, J., Liang, J., Song, Y., ... Wang, H. (2018). PM2.5 exposure aggravates renal injury through inflammatory stress in mice with diabetic nephropathy. Science of the Total Environment, 642, 347–356. https://doi.org/10.1016/j.scitotenv.2018.06.062
    Gray, D. L., Wallace, L. A., Brinkman, M. C., & Williams, R. W. (2015). Respiratory and cardiovascular effects of metals in ambient particulate matter: A critical review. Environmental Science: Processes & Impacts, 17(7), 1421–1444. https://doi.org/10.1039/C5EM00149A
    Greenbaum, L. A., Warady, B. A., Furth, S. L., Flynn, J. T., Pierce, C., & Moxey-Mims, M. (2009). Risk factors for rapid progression of CKD in children and adolescents. Kidney International, 76(8), 885–891. https://doi.org/10.1038/ki.2009.268
    Haller H, Bertram A, Nadrowitz F, Menne J. Monocyte chemoattractant protein-1 andthe kidney.Curr Opin Nephrol Hypertens(2016) 25(1):42–9. doi:10.1097/mnh.0000000000000186
    Hassanvand, M. S., Naddafi, K., Kashani, H., Faridi, S., Kunzli, N., Nabizadeh, R., Momeniha, F., Gholampour, A., Arhami, M., Zare, A., & Yunesian, M. (2017). Short-term effects of particle size fractions on circulating biomarkers of inflammation in a panel of elderly subjects and healthy young adults. Environmental Pollution, 223, 695–704. https://doi.org/10.1016/j.envpol.2017.01.060
    Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., & Kaufman, J. D. (2013). Long-term air pollution exposure and cardio-respiratory mortality: A review. Environmental Health, 12(1), 43. https://doi.org/10.1186/1476-069X-12-43
    H. Guo, H. Deng, H. Liu, Z. Jian, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang, L. Zhao, Nickel carcinogenesis mechanism: cell cycle dysregulation, Environ. Sci. Pollut. Res. Int. 28 (5) (2021) 4893–4901.
    H. Guo, H. Yin, Z. Zuo, Z. Yang, Y. Yang, L. Wei, H. Cui, H. Deng, X. Chen, J. Chen, Y. Zhu, P. Ouyang, Y. Geng, Z. Du, H. Tang, F. Wang, J. Fang, Oxidative stress mediated apoptosis and autophagy involved in Ni-induced nephrotoxicity in the mice, Ecotoxicol. Environ. Saf. 228 (2021) 112954.
    H. Yin, Z. Zuo, Z. Yang, H. Guo, J. Fang, H. Cui, P. Ouyang, X. Chen, J. Chen, Y. Geng, Z. Chen, C. Huang, Y. Zhu, Nickel induces autophagy via PI3K/AKT/mTOR and AMPK pathways in mouse kidney, Ecotoxicol. Environ. Saf. 223 (2021)112583.
    Han, W. K., Bailly, V., Abichandani, R., Thadhani, R., & Bonventre, J. V. (2002). Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney International, 62(1), 237–244. https://doi.org/10.1046/j.1523-1755.2002.00433.x
    Haller H, Bertram A, Nadrowitz F, Menne J. Monocyte chemoattractant protein-1 andthe kidney.Curr Opin Nephrol Hypertens(2016) 25(1):42–9. doi:10.1097/mnh.0000000000000186
    Harambat J., Van Stralen K.J., Kim J.J., Tizard E.J. Epidemiology of chronic kidney disease in children. Pediatr Nephrol. 2012;27:363–373. doi: 10.1007/s00467-011-1939-1.
    Harbak, L. O., Bennekou, H., and Bennekou, P. (2012). Cobalt metabolism and toxicology—a brief update. Sci. Total Environ. 432, 210–215. doi:10.1016/j.scitotenv.2012.06.009
    Hayat et al., 2018 M.T. Hayat, M. Nauman, N. Nazir, S. Ali, N. Bangash Environmental hazards of cadmium: past, present, and future Cadmium Toxic. Toler. Plants Physiol. Remediat., 163–183 (2018), 10.1016/B978-0-12-814864-8.00007-3
    Hazen-Martin, D.J., Todd, J.H., Sens, M.A., Khan, W., Bylander, J.E., Smyth, B.J., Sens, D.A., 1993. Electrical and freeze-fracture analysis of the effects of ionic cadmium on cell membranes of human proximal tubule
    Hegazy, A.M.S., Fouad, U.A., 2014. Evaluation of lead hepatotoxicity; histological, histochemical and ultrastructural study. Forensic Med. Anat. Res. 02 (03), 70–79. https://doi.org/10.4236/fmar.2014.23013.
    Hellström, L., Elinder, C.-G., Dahlberg, B., Lundberg, M., Järup, L., Persson, B., Axelson, O., 2001. Cadmium exposure and end-stage renal disease. Am. J. Kidney Dis. 38 (5), 1001–1008. https://doi.org/10.1053/ajkd.2001.28589.
    Herbelin A, Urena P, Nguyen ATet al.Elevated circulating levels ofinterleukin-6 in patients with chronic renal failure.Kidney Int1991;39:954–960.
    Hertz-Picciotto, I., Croft, J., 1993. Review of the relation between blood lead and blood pressure. Epidemiol. Rev. 15, 352–373. https://doi.org/10.1093/oxfordjournals.epirev.a036125.
    Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, Hobbs FR (2016) Global prevalence of chronic kidney disease–a systematic review and meta-analysis. PLoS One 11:e0158765. https://doi.org/10.1371/journal.pone.0158765
    Hinokio Y, Suzuki S, Hirai M, Suzuki C, Suzuki M, Toyota T (2002) Urinary excretion of 8-oxo-7, 8-dihydro-2′-deoxyguanosine as a predictor of the development of diabetic nephropathy. Diabetologia 45:877–882
    Honda H, Qureshi AR, Heimburger Oet al.Serum albumin, C-reactive protein, interleukin 6, and fetuin a as predictors of malnutrition,cardiovascular disease, and mortality in patients with ESRD.Am J KidneyDis2006;47: 139–148.
    Horowitz, Y., Greenberg, D., Ling, G., & Lifshitz, M. (2002). Acrodynia: A case report of two siblings. Archives of Disease in Childhood, 86(6), 453. https://doi.org/10.1136/adc.86.6.453
    Hsiao, C.-L., Wu, K.-H., Wan, K.-S., 2011. Effects of environmental lead exposure on T-helper cell-specific cytokines in children. J. Immunotoxicol. 8 (4), 284–287. https://doi.org/10.3109/1547691X.2011.592162.
    Maria Tellez-Plaza., Ana Navas-Acien anavas., Ciprian M. Crainiceanu, and Eliseo Guallar(2007)Cadmium Exposure and Hypertension in the 1999–2004 National Health and Nutrition Examination Survey (NHANES) https://doi.org/10.1289/ehp.10764.
    Huang, H.-W., Lee, C.-H., & Yu, H.-S. (2019). Arsenic-induced carcinogenesis and immune dysregulation. International Journal of Environmental Research and Public Health, 16(15), 2746. https://doi.org/10.3390/ijerph16152746
    Huang, Y., Li, C., Zhang, X., Zhang, Y., Wang, L., Zhang, L., ... & Zhao, Y. (2023). Association between urinary metals/metalloids and chronic kidney disease and albuminuria: Evidence from a population-based study. Scientific Reports, 13(1), 14539. https://doi.org/10.1038/s41598-023-42282-z
    Humphreys BD, Xu F, Sabbisetti Vet al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest 2013;123:4023–35. 10.1172/JCI45361.
    Hwang, S. J., Tsai, J. C., & Chen, H. C. (2010). Epidemiology, impact and preventive care of chronic kidney disease in Taiwan. Nephrology, 15(Suppl. 2), 3–9. https://doi.org/10.1111/j.1440-1797.2010.01304.x
    Hyder, O., Chung, M., Cosgrove, D., Herman, J.M., Li, Z., Firoozmand, A., Gurakar, A., Koteish, A., Pawlik, T.M., 2013. Cadmium exposure and liver disease among US adults. J. Gastrointest. Surg. 17 (7), 1265–1273. https://doi.org/10.1007/s11605-013-2210-9.
    Ichimura T, Asseldonk EJPV, Humphreys BDet al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest 2008;118:1657–68. 10.1172/JCI34487.
    Ichimura, T., Bonventre, J. V., Bailly, V., Wei, H., Hession, C. A., Cate, R. L., & Sanicola, M. (1998). Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. Molecular Cloning and Expression in Injured Kidney. Journal of Biological Chemistry, 273(7), 4135–4142. https://doi.org/10.1074/jbc.273.7.4135
    Indian Journal of Nephrology. (2023). Not Just Small Adults: Considerations for Pediatric CKD. Indian Journal of Nephrology, 33(2), 89–95. https://indianjnephrol.org/not-just-small-adults-considerations-for-pediatric-chronic-kidney-disease/
    International Society of Nephrology. (2023). ISN–Global Kidney Health Atlas: An Assessment of Global Kidney Health Care Status focusing on Capacity, Availability, Accessibility, Affordability and Outcomes of Kidney Disease (3rd ed.). Brussels, Belgium: International Society of Nephrology. Retrieved from https://www.theisn.org/global-atlas
    J. Li, X. Dai, S. Hu, Q. Yang, Z. Jing, Y. Zhou, X. Jian, Nickel induces pyroptosis via the Nrf2/NLRP3 pathway in kidney of mice, Biol. Trace Elem. Res. (2023). https://doi.org/10.1007/s12011-023-03922-7.
    Jacquillet, G., Barbier, O., Rubera, I., Tauc, M., Borderie, A., Namorado, M.C., Martin, D., Sierra, G., Reyes, J.L., Poujeol, P., Cougnon, M., 2007. Cadmium causes delayed effects on renal function in the offspring of cadmium-contaminated pregnant female rats. Am. J. Physiol. - Ren. Physiol. 293 (5), F1450–F1460. https://doi.org/10.1152/ajprenal.00223.2007
    Jancsek-Turoczi B, Hoffer A, Nyiro-Kosa I, Gelencser A. Sampling and characterization of resuspended and respirable road dust. Journal of Aerosol Science. 2013; 65:69–76.
    Ju, W., Nair, V., Smith, S., Zhu, L., Shedden, K., Song, P. X. K., Mariani, L. H., Eichinger, F. H., Berthier, C. C., Randolph, A., Lai, J. Y. C., Zhou, Y., Hawkins, J. J., Bitzer, M., Sampson, M. G., Thier, M., Solier, C., Duran-Pacheco, G., Duchateau-Nguyen, G., Essioux, L., … Kretzler, M. (2015). Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Science Translational Medicine, 7(316), 316ra193. https://doi.org/10.1126/scitranslmed.aac7071
    Ju, W., Greene, T. H., Eichinger, F., Nair, V., Hodgin, J. B., Bitzer, M., Lee, Y. S., Zhu, L., Kehinde, O., Meijers, B., Zhang, J., Ahn, W., Smith, S., Guajardo, J., Johnson, B., Brosius, F. C., Kretzler, M., & CKD Biomarker Consortium. (2020). Urinary EGF as a biomarker of CKD progression in children and adults. Journal of the American Society of Nephrology, 31(11), 2793–2805. https://doi.org/10.1681/ASN.2020040421
    Ju, W., & Smith, M. (2020). Urinary epidermal growth factor as a marker of disease progression in children with chronic kidney disease. Pediatric Nephrology, 35(3), 465–473. https://pmc.ncbi.nlm.nih.gov/articles/PMC7136430/
    Khan, S., Reid, B.J., Li, G., Zhu, Y.G., 2014. Application of biochar to soil reduces cancer risk via rice consumption: A case study in Miaoqian village, Longyan. China. Environ. Int. 68, 154–161. https://doi.org/10.1016/j.envint.2014.03.017.
    Kamei, N. et al. Association between circulating tumor necrosis factor-related biomarkers and estimated glomerular filtration rate in type 2 diabetes. Sci. Rep.-Uk8, 15302. https://pubmed.ncbi.nlm.nih.gov/30333553/
    Kasten-Jolly, J., Heo, Y., Lawrence, D.A., 2010. Impact of developmental lead exposure on splenic factors. Toxicol. Appl. Pharmacol. 247 (2), 105–115. https://doi.org/10.1016/j.taap.2010.06.003.
    Kato A, Odamaki M, Takita Tet al.Association between interleukin-6 andcarotid atherosclerosis in hemodialysis patients.Kidney Int2002;61:1143–1152.
    Kelly, J. T., Su, G., Zhang, L., Qin, X., Marshall, S., González-Ortiz, A., Xu, H., & Carrero, J. J. (2018). Modifiable lifestyle factors for primary prevention of chronic kidney disease: A systematic review and meta-analysis. BMC Nephrology, 19(1), 107. https://doi.org/10.1186/s12882-018-0904-4
    Kelly, F. J. (2003). Oxidative stress: Its role in air pollution and adverse health effects. Occupational and Environmental Medicine, 60(8), 612–616. https://doi.org/10.1136/oem.60.8.612
    Khalil, S. R., El Bohi, K. M., Khater, S., Abd El-fattah, A. H., Mahmoud, F. A., and Farag, M. R. (2020). Moringa oleifera leaves ethanolic extract influences DNA damage signaling pathways to protect liver tissue from cobalt -triggered apoptosis in rats. Ecotoxicol. Environ. Saf. 200, 110716. doi:10.1016/j.ecoenv.2020.110716
    Kim, H., Song, B., Kim, H., Park, J., 2009. Distribution of trace metals at two abandoned mine sites in Korea and arsenic-associated health risk for the residents. Toxicol. Environ. Health Sci. 1 (2), 83–90. https://link.springer.com/article/10.1007/BF03216468.
    Kim, Y.-J., & Kim, J.-M. (2015). Arsenic toxicity in male reproduction and development. Development & Reproduction, 19(4), 167–180. https://doi.org/10.12717/dr.2015.19.4.167
    Koedrith, P., Kim, H., Weon, J.-I., and Seo, Y. R. (2013). Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int. J. Hyg. Environ. Health 216 (5), 587–598. doi:10.1016/j.ijheh.2013.02.010
    Kulka, M. (2016). A review of paraoxonase 1 properties and diagnostic applications. Polish Journal of Veterinary Sciences, 19(2), 225–232. https://doi.org/10.1515/pjvs-2016-0028
    Kumar, S., Bhatia, P., & Sinha, A. (2018). Hepcidin and proinflammatory markers in children with chronic kidney disease. Pediatric Nephrology, 33(4), 595–602. https://doi.org/10.1007/s00467-018-3902-1
    Künzli, N. et al. Public-health impact of outdoor and traffic-related air pollution: A European assessment. Lancet. 356(9232), 795–801 (2000).
    Laden, F., Neas, L. M., Dockery, D. W., & Schwartz, J. (2000). Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environmental Health Perspectives, 108(10), 941–947. https://doi.org/10.1289/ehp.00108941
    Lajer, M., Tarnow, L., Fleckner, J., Hansen, B. V., Parving, H. H., & Rossing, P. (2017). Plasma concentrations of 8-hydroxy-2′-deoxyguanosine and risk of kidney disease in type 1 diabetes. Diabetologia, 60(7), 1338–1346. https://doi.org/10.1007/s00125-017-4510-1
    Lammel G, Schneider F, Bruggemann E, Gnauk T, Rohrl A, Wieser P. Aerosols emitted from a livestock farm in southern Germany. Water Air Soil Poll. 2004.
    Lee, J., Lim, S., Lee, S., & Park, H. (2024). Evaluating the impact of airborne fine particulate matter, heavy metal concentrations, and oxidative stress. Toxics, 12(7), 465. https://doi.org/10.3390/toxics12070465
    Lentini, P., Zanoli, L., Granata, A., Signorelli, S. S., Castellino, P., & Dell’Aquila, R. (2017). Kidney and heavy metals – The role of environmental exposure (Review). Molecular Medicine Reports, 15(5), 3413–3419. https://doi.org/10.3892/mmr.2017.6389
    Levey, A. S., & Coresh, J. (2012). Chronic kidney disease. The Lancet, 379(9811), 165–180. https://doi.org/10.1016/S0140-6736(11)60178-5
    Levin A, Stevens PE, Bilous RW, et al. Kidney Disease:Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney international supplements 2013; 3(1): 1-150.
    Levin-Schwartz, Y., Bandeen-Roche, K., Renzetti, S., Claus Henn, B., Coull, B. A., Gennings, C., & Sánchez, B. N. (2021). Nephrotoxic metal mixtures and preadolescent kidney function. Children, 8(8), 673. https://doi.org/10.3390/children8080673
    Leyssens, L., Vinck, B., Van Der Straeten, C., Wuyts, F., & Maes, L. (2017). Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology, 387, 43–56. https://doi.org/10.1016/j.tox.2017.06.011
    Leyssens, L., Vinck, B., Van Der Straeten, C., Wuyts, F., and Maes, L. (2017). Cobalt toxicity in humans-A review of the potential sources and systemic health effects. Toxicology 387, 43–56. doi:10.1016/j.tox.2017.05.015
    Li, G., Fang, C., Wang, S. & Sun, S. The effect of economic growth, urbanization, and industrialization on fine particulate matter (PM(2.5)) concentrations in China. Environ. Sci. Technol. 50(21), 11452–11459 (2016).
    Li, K., Wang, Y., Zhang, Q., Wang, Y., & Zhang, Y. (2024). Chemical composition, sources and formation mechanism of urban PM2.5 in Chengdu. Atmospheric Chemistry and Physics, 24(4), 2803–2820. https://doi.org/10.5194/acp-24-2803-2024
    Li, M., Pi, H., Yang, Z., Reiter, R.J., Xu, S., Chen, X., Chen, C., Zhang, L., Yang, M., Li, Y., Guo, P., Li, G., Tu, M., Tian, L.i., Xie, J., He, M., Lu, Y., Zhong, M., Zhang, Y., Yu, Z., Zhou, Z., 2016a. Melatonin antagonizes cadmium-induced neurotoxicity by activating the transcription factor EB-dependent autophagy–lysosome machinery in mouse neuroblastoma cells. J. Pineal Res. 61 (3), 353–369. https://doi.org/10.1111/jpi.12353.
    Lin, J. L., Lin-Tan, D. T., Hsu, K. H., & Yu, C. C. (2003). Environmental lead exposure and progressive renal insufficiency. New England Journal of Medicine, 348(4), 277–286. https://www.nejm.org/doi/full/10.1056/NEJMoa021672
    Liu, S. et al. Long-term exposure to low-level air pollution and incidence of asthma: The ELAPSE project. Eur. Respir. J. 57(6), 2003099 (2021).
    Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y., Tong, S., Coelho, M., Saldiva, P. H. N., Lavigne, E., Matus, P., Valdes Ortega, N., Osorio Garcia, S., Pascal, M., Stafoggia, M., Scortichini, M., Hashizume, M., Honda, Y., Hurtado-Díaz, M., Cruz, J., ... Kan, H. (2019). Ambient particulate air pollution and daily mortality in 652 cities. New England Journal of Medicine, 381(8), 705–715 https://doi.org/10.1056/NEJMoa1817364
    Loghman-Adham, M. (1997). Renal effects of environmental and occupational lead exposure. Environmental Health Perspectives, 105(9), 928–938. https://doi.org/10.1289/ehp.97105928
    Loh, N., Loh, H.-P., Wang, L.K., Wang, M.-H.-S., 2016. Health effects and control of toxic lead in the environment. Nat. Resour. Control Process. 233–284. https://doi.org/10.1007/978-3-319-26800-2_5.
    Lowe-Jones, R., Ethier, I., Fisher, L. A., Wong, M. M. Y., Thompson, S., Nakhoul, G., … & Zaidi, D. (2024). Capacity for the management of kidney failure in the International Society of Nephrology North America and the Caribbean region: report from the 2023 ISN Global Kidney Health Atlas (ISN-GKHA). Kidney International Supplements, 13(1), 83–96. https://doi.org/10.1016/j.kisu.2024.01.003
    Lu, H., Shi, X., Costa, M., Huang, C., 2005. Carcinogenic effect of nickel compounds. Mol. Cell. Biochem. 279 (1-2), 45–67. https://doi.org/10.1007/s11010-005-8215-2.
    Lue, S.-H., Wellenius, G. A., Wilker, E. H., Mostofsky, E., Mittleman, M. A., & Kioumourtzoglou, M.-A. (2013). Residential proximity to major roadways and renal function. Journal of Epidemiology and Community Health, 67(8), 629–634. https://doi.org/10.1136/jech-2012-201321
    Luo, L., Wang, B., Jiang, J., Huang, Q., Yu, Z., Li, H., et al. (2020). Heavy metal contaminations in herbal medicines: determination. comprehensive risk assessments. Front. Pharmacol. 11, 595335. doi:10.3389/fphar.2020.595335
    Lv W, Booz GW, Wang Y, Fan F, Roman RJ. Inflammation and renal fibrosis:Recent developments on key signaling molecules as potential therapeutic targets.Eur JPharmacol(2018) 820:65–76. doi:10.1016/j.ejphar.2017.12.016
    M. Singh, Y. Verma, S.V.S. Rana, Nephrotoxicity of nickel nano and microparticles in rat- a comparative, time dependent study with special reference to antioxidant defence system, Inorg Nano-Met Chem 52 (9) (2022) 1335–1344.
    M. (2013). Concentrations of mercury, lead, chromium, cadmium, arsenic and aluminum in irrigation water wells and wastewaters used for agriculture in
    Malaguarnera, G., Cataudella, E., Giordano, M., Nunnari, G., Chisari, G., Malaguarnera, M., 2012. Toxic hepatitis in occupational exposure to solvents. World J. Gastroenterol. 18, 2756–2766. https://doi.org/10.3748/wjg.v18.i22.2756.
    Manisalidis, I., Stavropoulou, E., Stavropoulos, A. & Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 8, 14 (2020).
    Marchetti, C., 2014. Interaction of metal ions with neurotransmitter receptors and potential role in neurodiseases. Biometals 27 (6), 1097–1113. https://doi.org/10.1007/s10534-014-9791-y
    Martinelli N, Olivieri O, Girelli D (2013) Air particulate matter and cardiovascular disease: a narrative review. Eur J Intern Med 24:295–302. https://doi.org/10.1016/j.ejim.2013.04.001
    Martinez, V. D., Vucic, E. A., Becker-Santos, D. D., Gil, L., & Lam, W. L. (2011). Arsenic exposure and the induction of human cancers. Journal of Toxicology, 2011, 431287. https://doi.org/10.1155/2011/431287
    Martorell, I., Perelló, G., Martí-Cid, R., Llobet, J.M., Castell, V., Domingo, J.L., 2011. Human exposure to arsenic, cadmium, mercury, and lead from foods in catalonia, Spain: Temporal trend. Biol. Trace Elem. Res. 142 (3), 309–322. https://doi.org/10.1007/s12011-010-8787-x.
    Mashhad, northeastern Iran. Int. J. Occup. Environ. Med. 4 (2 April), 80–86
    Mazumdar, M., Bellinger, D. C., Gregas, M., Abanilla, K., Bacic, J., and Needleman, H. L. (2011). Low-level environmental lead exposure in childhood and adult intellectual function: a follow-up study. Environ. Health 10 (1), 24. doi:10.1186/1476-069x-10-24
    Mehta, A. J., Zanobetti, A., Bind, M.-A., Kloog, I., Koutrakis, P., Sparrow, D., Vokonas, P. S., & Schwartz, J. (2016). Long-term exposure to ambient fine particulate matter and renal function in older men: The VA Normative Aging Study. Environmental Health Perspectives, 124(9), 1353–1360. https://doi.org/10.1289/ehp.1510269
    Messias BA, Botelho RV, Saad SS, Mocchetti ER, Turke KC, Waisberg J. Serum C-reactive protein is a useful marker to exclude anastomotic leakage after colorectal surgery. Sci Rep. 2020 Feb 3;10(1):1687.
    Messner, B., Knoflach, M., Seubert, A., Ritsch, A., Pfaller, K., Henderson, B., Shen, Y.H., Zeller, I., Willeit, J., Laufer, G., Wick, G., Kiechl, S., Bernhard, D., 2009. Cadmium is a novel and independent risk factor for early atherosclerosis mechanisms and in vivo relevance. Arterioscler. Thromb. Vasc. Biol. 29 (9), 1392–1398. https://doi.org/10.1161/ATVBAHA.109.190082.
    Milton, A. H., Hussain, S., Akter, S., Rahman, M., Mouly, T., & Mitchell, K. (2017). A review of the effects of chronic arsenic exposure on adverse pregnancy outcomes. International Journal of Environmental Research and Public Health, 14(6), 556. https://doi.org/10.3390/ijerph14060556
    Mitsnefes M.M., Laskin B.L., Dahhou M. Mortality risk among children initially treated with dialysis for end-stage kidney disease, 1990–2010. JAMA. 2013;309:1921–1929. doi: 10.1001/jama.2013.4208.
    Miura, S., Takahashi, K., Imagawa, T., Uchida, K., Saito, S., Tominaga, M., Ohta, T.,2013. Involvement of TRPA1 activation in acute pain induced by cadmium in mice. Mol. Pain 9. https://doi.org/10.1186/1744-8069-9-7.
    Miyazawa, I. et al. Association between serum soluble TNFalpha receptors and renal dysfunction in type 2 diabetic patients without proteinuria. Diabetes Res. Clin. Pract.92, 174–180. https://www.sciencedirect.com/science/article/abs/pii/S016882271100009X.
    Mousavi, S. R., Balali-Mood, M., Riahi-Zanjani, B., Yousefzadeh, H., and Sadeghi, Cadmium-induced neurotoxicity still much ado much ado. Neural Regen. Res. 13, 1879–1882. https://doi.org/10.4103/1673-5374.239434.
    Murakoshi, M. et al. Circulating tumor necrosis factor-related biomarkers predict kidney function decline in Japanese patients with diabetes: An observational cohort study. Diabetes Res. Clin. Pract.206, 111017. https://pubmed.ncbi.nlm.nih.gov/37972856/.
    Murakoshi, M. et al. Progranulin and its receptor predict kidney function decline in patients with type 2 diabetes. Front. Endocrinol.13, 849457. https:// doi. org/ 10. 3389/ fendo. 2022. 849457 (2022).
    Murakoshi, M., Gohda, T. & Suzuki, Y. Circulating tumor necrosis factor receptors: A potential biomarker for the progression of diabetic kidney disease. Int. J. Mol. Sci.21, 1957. https://pubmed.ncbi.nlm.nih.gov/32183005/.
    Mousavi, S. R., Balali-Mood, M., Riahi-Zanjani, B., Yousefzadeh, H., and Sadeghi, M. (2013). Concentrations of mercury, lead, chromium, cadmium, arsenic and aluminum in irrigation water wells and wastewaters used for agriculture in Mashhad, northeastern Iran. Int. J. Occup. Environ. Med. 4 (2 April), 80–86
    Mishra, K. P., Singh, V. K., Rani, R., Yadav, V. S., Chandran, V., Srivastava, S. P., & Seth, P. K. (2009). Effect of lead exposure on the immune response of some occupationally exposed individuals. Toxicology International, 16(1), 3–7. PMID: 21938204
    Nan, Y., Sun, H., Li, M., Liu, C., Jiang, Y., Li, Y., ... & He, M. (2022). Associations of urinary nickel with kidney function and albuminuria in U.S. adults: Results from NHANES 2011–2016. Environmental Research, 214(Part 4), 114096. https://doi.org/10.1016/j.envres.2022.114096
    Navas-Acien, A., Selvin, E., Sharrett, A.R., Calderon-Aranda, E., Silbergeld, E., Guallar, E., 2004. Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation 109 (25), 3196–3201. https://doi.org/10.1161/01.CIR.0000130848.18636.B2.
    Naz, B., Batool, S.S., 2017. Infertility related issues and challenges: Perspectives of patients, spouses, and infertility experts. Pakistan J. Clin. Soc. Psychol. 15, 3–11.
    Niewczas, M. A. et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J. Am. Soc. Nephrol.23, 507–515. https://pubmed.ncbi.nlm.nih.gov/22266663/.
    Nitta H, Sato T, Nakai S, Maeda K, Aoki S, Ono M. Respiratory Health Associated with Exposure To Automobile Exhaust. 1. Results of Cross-Sectional Studies in 1979, 1982, and 1983. ArchEnviron Health. 1993; 48:53–58. [PubMed: 7680850]
    Nolte S, Mueller B, Pringsheim W (1991) Serum alpha 1-microglobulin and beta 2-microglobulin for the estimation of fetal glomerular renal function. Pediatr Nephrol 5:573–577
    North American Pediatric Renal Trials and Collaborative Studies. (2008). 2008 annual report of the North American Pediatric Renal Trials and Collaborative Studies. Boston, MA: NAPRTCS. Retrieved from https://web.emmes.com/study/ped/annlrept
    Ntziachristos L, Ning Z, Geller MD, Sheesley RJ, Schauer JJ, Sioutas C. Fine, ultrafine and nanoparticle trace element compositions near a major freeway with a high heavy-duty diesel fraction. Atmospheric Environment. 2007; 41:5684–5696. https://www.sciencedirect.com/science/article/abs/pii/S1352231007001926
    Oyagbemi, A. A., Akinrinde, A. S., Adebiyi, O. E., Jarikre, T. A., Omobowale, T. O., Ola-Davies, O. E., et al. (2020). Luteolin supplementation ameliorates cobalt-induced oxidative stress and inflammation by suppressing NF-кB/Kim-1 signaling in the heart and kidney of rats. Environ. Toxicol. Pharmacol. 80, 103488. doi:10.1016/j.etap.2020.103488
    O’Flynn J, van der Pol P, Dixon KO, Prohaszka Z, Daha MR, van Kooten C. Monomeric C-reactive protein inhibits renal cell-directed complement activation mediated by properdin. Am J Physiol Ren Physiol. 2016 Jun 1;310(11):F1308–16.
    Parfrey PS, Foley RN. The clinical epidemiology of cardiac disease in chronic renal failure.J Am Soc Nephrol 1999;10: 1606–1615.
    Park, J., Kim, H. J., Lee, C. H., Lee, C. H. & Lee, H. W. Impact of long-term exposure to ambient air pollution on the incidence of chronic obstructive pulmonary disease: A systematic review and meta-analysis. Environ. Res. 194, 110703 (2021).
    Park, Y.-H., Kim, D., Dai, J., & Zhang, Z. (2015). Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis. Toxicology and Applied Pharmacology, 287(3), 240–245. https://doi.org/10.1016/j.taap.2015.06.008
    Paustenbach, D. J., Tvermoes, B. E., Unice, K. M., Finley, B. L., and Kerger, B. D. (2013). A review of the health hazards posed by cobalt. Crit. Rev. Toxicol. 43(4), 316–362. doi:10.3109/10408444.2013.779633
    Peters, J.L., Perlstein, T.S., Perry, M.J., McNeely, E., Weuve, J., 2010. Cadmium exposure in association with history of stroke and heart failure. Environ. Res. 110 (2), 199–206. https://doi.org/10.1016/j.envres.2009.12.004.
    Pierce, B. L., Kibriya, M. G., Tong, L., Jasmine, F., Argos, M., Roy, S., ... & Ahsan, H. (2012). Genome-wide association study identifies chromosome 10q24.32 variants associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genetics, 8(2), e1002522. https://doi.org/10.1371/journal.pgen.1002522
    Politis, M. D., Hivert, M.-F., Rifas-Shiman, S. L., Ye, X., Calafat, A. M., Oken, E., & Fleisch, A. F. (2022). Prenatal metal exposures and associations with kidney function biomarkers in children at 6 years of age. Toxics, 10(11), 692. https://doi.org/10.3390/toxics10110692
    Pope, C. A., Bhatnagar, A., McCracken, J. P., Abplanalp, W., Conklin, D. J., & O’Toole, T. (2016). Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circulation Research, 119(11), 1204–1214. https://doi.org/10.1161/CIRCRESAHA.116.309279
    Power AL, Tennant RK, Jones RT, Tang Y, Du J, Worsley AT, Love J(2018) Monitoring impacts of urbanisation and industrialisation on air quality in the Anthropocene using urban pond sediments. Frontiers in Earth Science 6:131. https://doi.org/10.3389feart.2018.00131
    R. Fischer, J.M. Unrine, C. Vangala, W.T. Sanderson, S. Mandayam, K.O. Murray, Evidence of nickel and other trace elements and their relationship to clinical findings in acute Mesoamerican Nephropathy: a case-control analysis, PLoS One 15 (11) (2020) e240988.
    Rao M, Guo D, Perianayagam MCet al.Plasma interleukin-6 predicts cardiovascular mortality in hemodialysis patients.Am J Kidney Dis 2005;45: 324–333.
    Rao, X., Zhong, J., Brook, R. D., & Rajagopalan, S. (2018). Effect of particulate matter air pollution on cardiovascular oxidative stress pathways. Antioxidants & Redox Signaling, 28(9), 797–818. https://doi.org/10.1089/ars.2017.7174
    Rattan, S., Zhou, C., Chiang, C., Mahalingam, S., Brehm, E., Flaws, J.A., 2017. Exposure to endocrine disruptors during adulthood: Consequences for female fertility. J. Endocrinol. 233, R109–R129. https://doi.org/10.1530/JOE-17-0023.
    Reczek, C. R., & Chandel, N. S. (2017). The two faces of reactive oxygen species in cancer. Annual Review of Cancer Biology, 1(1), 79–98. https://doi.org/10.1146/annurev-cancerbio-041916-065808
    Rees, L., Shroff, R., Hutchinson, C., & Fernando, O. N. (2009). Long-term outcome of children with CKD. Pediatric Nephrology, 24(5), 853–861. https://doi.org/10.1007/s00467-008-1083-8
    Reyes, J.L., Molina-Jijón, E., Rodríguez-Muñoz, R., Bautista-García, P., Debray-García, Y., Namorado, M.D.C., 2013. Tight junction proteins and oxidative stress in heavy metals-induced nephrotoxicity. Biomed Res. Int. 2013, 1–14. https://pubmed.ncbi.nlm.nih.gov/23710457/
    Rice, K. M., Walker, E. M., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental mercury and its toxic effects. Journal of Preventive Medicine and Public Health, 47(2), 74–83. https://doi.org/10.3961/jpmph.2014.47.2.74
    Ridker, P. M., & Cook, N. R. (2019). High-sensitivity C-reactive protein and the risk of chronic kidney disease. Kidney International, 96(6), 1236–1243. https://pubmed.ncbi.nlm.nih.gov/31382219/
    Robles, N. R., Lopez Gomez, J., Garcia Pino, G., Valladares, J., Hernandez Gallego, R., & Cerezo, I. (2021). Alpha-1-microglobulin: Prognostic value in chronic kidney disease. Medicina Clínica, 157(8), 368–370. https://www.sciencedirect.com/science/article/abs/pii/S2387020621005027
    Robles, N. R., López‐Gómez, J., García‐Pino, G., Valladares, J., Hernández Gallego, R., Cerezo, I. (2021).Alpha-1-microglobulin: Prognostic value in chronic kidney disease. Medicina Clínica (Barcelona), 157(8), 368-370.
    Roy, J. S., Chatterjee, D., Das, N., & Giri, A. K. (2018). Substantial evidences indicate that inorganic arsenic is a genotoxic carcinogen: A review. Toxicological Research, 34(4), 311–324. https://doi.org/10.5487/TR.2018.34.4.311
    Sabbisetti VS, Ito K, Wang C et al. Novel assays for detection of urinary KIM-1 in mouse models of kidney injury. Toxicol Sci 2013;131:13–25. 10.1093/toxsci/kfs268.
    Sabbisetti VS, Waikar SS, Antoine DJet al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J Am Soc Nephrol 2014;25:2177–86. 10.1681/ASN.2013070758.
    Sahay, M. (2024). The ongoing saga of acute kidney injury associated with gastroenteritis in developing world. Indian Journal of Nephrology, 34(4), 279–281. https://doi.org/10.25259/IJN_19_2024
    Salnikow, K., & Zhitkovich, A. (2008). Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic, and chromium. Chemical Research in Toxicology, 21(1), 28–44. https://doi.org/10.1021/tx700198a
    Salonen, J. T., Malin, R., Tuomainen, T. P., Nyyssönen, K., Lakka, T. A., & Lehtimäki, T. (1999). Polymorphism in high density lipoprotein paraoxonase gene and risk of acute myocardial infarction in men: Prospective nested case-control study. BMJ, 319(7209), 487–488.
    Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. Fine particulate air pollution and mortality in 20 US Cities, 1987–1994. N Engl J Med. 2000; 343:1742–1749. [PubMed: 11114312]
    Sandokji I, Greenberg JH. Plasma and urine biomarkers of CKD: A review of findings in the CKiD study.Semin Nephrol(2021) 41(5):416–26. doi:10.1016/j.semnephrol.2021.09.003
    Sarnak, M. J. et al. Plasma biomarkers as risk factors for incident CKD. Kidney Int. Rep.7, 1493–1501. https://pubmed.ncbi.nlm.nih.gov/35812266/.
    Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children and adolescents. Pediatr Clin North Am 34:571–590
    Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263
    Schwartz, G.G., Il’yasova, D., Ivanova, A., 2003. Urinary cadmium, impaired fasting glucose, and diabetes in the NHANES III. Diabetes Care 26 (2), 468–470. https://doi.org/10.2337/diacare.26.2.468.
    Seikaly MG, Browne R, Bajaj G, Arant BS Jr (1996) Limitations to body length/serum creatinine ratio as an estimate of glomerular filtration in children. Pediatr Nephrol 10:709–711
    Shafer MM, Perkins DA, Antkiewicz DS, Stone EA, Quraishi TA, Schauer JJ. Reactive oxygen species activity and chemical speciation of size-fractionated atmospheric particulate matter from Lahore, Pakistan.” J Environ Monit. 2010;12:704–715
    Shi, H., Hudson, L. G., Ding, W., Wang, S., Cooper, K. L., Liu, S., Chen, Y., Shi, X., & Liu, K. J. (2004). Arsenite causes DNA damage in keratinocytes via generation of hydroxyl radicals. Chemical Research in Toxicology, 17(7), 871–878. https://doi.org/10.1021/tx049940z
    Shou, Y. et al. A review of the possible associations between ambient PM2.5 exposures and the development of Alzheimer’s disease. Ecotoxicol. Environ. Saf. 174, 344–352 (2019).
    Shroff R, Ledermann S (2009) Long-term outcome of chronic dialysis in children. Pediatr Nephrol 24:463–474
    Silbergeld, E.K., Waalkes, M., Rice, J.M., 2000. Lead as a carcinogen: Experimental evidence and mechanisms of action. Am. J. Ind. Med. 38, 316–323. https://doi.org/10.1002/1097-0274(200009)38:3<316::AID-AJIM11>3.0.CO;2-P.
    SinghS,AnshitaD,RavichandiranV.MCP-1:Function,regulation,andinvolvement in disease.Int Immunopharmacol(2021) 101(Pt B):107598.doi:10.1016/j.intimp.2021.107598
    Skerfving, S., & Bergdahl, I. A. (2007). Lead. In Nordberg, G. F., Fowler, B. A., & Nordberg, M. (Eds.), Handbook on the toxicology of metals (3rd ed., pp. 599–643). Academic Press.
    Smith, J. D., & Brown, L. M. (2015). Influence of malondialdehyde and matrix metalloproteinase-9 on atherosclerosis in chronic kidney disease. Oxidative Medicine and Cellular Longevity, 2015, 614357. https://pmc.ncbi.nlm.nih.gov/articles/PMC4619965/
    Sorensen M, Autrup H, Moller P, Hertel O, Jensen SS, Vinzents P, Knudsen LE, Loft S. Linking exposure to environmental pollutants with biological effects. Mutat Res-Rev Mutat Res. 2003; 544:255–271.
    Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754.
    Stanek, L.W., Sacks, J.D., Dutton, S.J., Dubois, J.-J.B., 2011. Attributing health effects to apportioned components and sources of particulate matter: An evaluation of collective results. Atmos. Environ. 45, 5655–5663. https://doi.org/10.1016/j. atmosenv.2011.07.023.
    Stanier, C. O., Lee, S., & Rees, S. L. (2014). Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States. Environmental Science: Processes & Impacts, 16(6), 1362–1370. https://doi.org/10.1039/C3EM00719G
    Steenland, K., Boffetta, P., 2000. Lead and cancer in humans: Where are we now? Am. J. Ind. Med. 38, 295–299. https://doi.org/10.1002/1097-0274(200009)38:3<295::AID-AJIM8>3.0.CO;2-L.
    Stenvinkel P, Ketteler M, Johnson RJet al.IL-10, IL-6, and TNF-alpha:central factors in the altered cytokine network of uremia–the good, the bad, and the ugly.Kidney Int 2005;67: 1216–1233.
    Stern-Zimmer M, Calderon-Margalit R, Skorecki K, Vivante A. Childhood risk factors for adulthood chronic kidney disease. Pediatric Nephrology. 2020:1–10. pmid:32500249
    Strachan, D. P. (2010). Trace elements and health—An epidemiological perspective. In M. F. T. Coughlan & V. L. Madsen (Eds.), Trace Elements and Their Effects on Human Health (pp. 89–100). Academic Press.
    Strachan, S. (2010). Trace elements. Curr. Anaesth. Crit. Care 21 (1), 44–48. doi:10.1016/j.cacc.2009.08.004
    Tam FWK, Ong ACM. Renal monocyte chemoattractant protein-1: an emerginguniversal biomarker and therapeutic target for kidney diseases?Nephrol DialTransplant(2020) 35(2):198–203. doi:10.1093/ndt/gfz082
    Tang Y, Mak SK, Xu AP, Lan HY. Role of C-reactive protein in the pathogenesis of acute kidney injury. Nephrology (Carlton). 2018 Oct;23(Suppl 4):50–2.
    Tarng DC, Huang TP, Wei YH et al (2000) 8-Hydroxy-2′-deoxyguanosine of leukocyte DNA as a marker of oxidative stress in chronic hemodialysis patients. Am J Kidney Dis 36:934–944
    Tarng DC, Wen Chen T, Huang TP, Chen CL, Liu TY, Wei YH (2002) Increased oxidative damage to peripheral blood leukocyte DNA in chronic peritoneal dialysis patients. J Am Soc Nephrol 13:1321–1330
    Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., and Sutton, D. J. (2012). Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 101, 133–164. doi:10.1007/978-3-7643-8340-4_6
    Tellez-Plaza, M., Guallar, E., Howard, B.V., Umans, J.G., Francesconi, K.A., Goessler, W., Silbergeld, E.K., Devereux, R.B., Navas-Acien, A., 2013. Cadmium exposure and incident cardiovascular disease. Epidemiology 24 (3), 421–429. https://doi.org/10.1097/EDE.0b013e31828b0631.
    Tellez-Plaza, M., Navas-Acien, A., Crainiceanu, C.M., Guallar, E., 2008. Cadmium exposure and hypertension in the 1999–2004 National Health and Nutrition Examination Survey (NHANES). Environ. Health Perspect. 116 (1), 51-56.
    Tellez-Plaza, M., Navas-Acien, A., Menke, A., Crainiceanu, C.M., Pastor-Barriuso, R., Guallar, E., 2012. Cadmium exposure and all-cause and cardiovascular mortality in the U.S. general population. Environ. Health Perspect. 120 (7), 1017–1022. https://doi.org/10.1289/ehp.1104352.
    Tian, X., Liu, J., Liu, C., Liu, W., Zhang, F., Sun, Q., & Jiang, C. (2023). Mixed heavy metals exposure and kidney injury in a general Chinese population: The mediation role of oxidative stress. Environmental Pollution, 316, 120629. https://doi.org/10.1016/j.envpol.2022.120629
    Thomson, E. M., Pal, S., & Brook, R. D. (2013). Acute exposure to air pollution alters brain and systemic cytokine expression: Impact of preexisting metabolic syndrome. Journal of Toxicology and Environmental Health, Part A, 76(15), 848–861. https://doi.org/10.1080/15287394.2013.821397
    Tomino, Y. & Gohda, T. The prevalence and management of diabetic nephropathy in Asia. Kidney Dis. 1, 52–60. https://doi.org/10.1159/000381757 (2015).
    Tonelli M, Muntner P, Lloyd A, Manns BJ, Klarenbach S, Pannu N, James MT, Hemmelgarn BR, AKD Network (2012) Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet 380:807–814. https://doi.org/10.1016/S0140-6736(12)60572-8
    Toxicological Profile for Cadmium, 2002. ATSDR’s Toxicol. Profiles. https://doi.org/10.1201/9781420061888_ch48.
    Tripepi G, Mallamaci F, Zoccali C. Inflammation markers, adhesion molecules, and all-cause and cardiovascular mortality in patients withESRD: searching for the best risk marker by multivariate modeling.JAmSoc Nephrol2005;16(Suppl 1): S83–S88.
    Tsai, M.-T., Huang, S.-Y., and Cheng, S.-Y. (2017). Lead poisoning can be easily misdiagnosed as acute porphyria and nonspecific abdominal painCase reports in emergency medicine 2017. Case Rep. Emerg Med. https://pubmed.ncbi.nlm.nih.gov/28630774/
    Upadhyay, Y., Chhabra, A., Nagar, J.C., 2020. A women infertility: an overview. Asian J. Pharm. Res. Dev. 8, 99–106. https://doi.org/10.22270/ajprd.v8i2.654.
    Vahter, M., Åkesson, A., Lidén, C., Ceccatelli, S., and Berglund, M. (2007). Gender differences in the disposition and toxicity of metals. Environ. Res. 104 (1), 85–95. doi:10.1016/j.envres.2006.08.003
    Vaidya, V. S., Ramirez, V., Ichimura, T., Bobadilla, N. A., & Bonventre, J. V. (2008). Urinary kidney injury molecule-1: A sensitive quantitative biomarker for early detection of kidney tubular injury. American Journal of Physiology-Renal Physiology, 290(2), F517–F529. https://doi.org/10.1152/ajprenal.00291.2005
    Vaidya, V. S., Ozer, J. S., Dieterle, F., Collings, F. B., Ramirez, V., Troth, S., Muniappa, N., Thudium, D., Gerhold, D., Holder, D. J., Bobadilla, N. A., Marrer, E., Perentes, E., Cordier, A., Vonderscher, J., Maurer, G., Goering, P. L., Sistare, F. D., & Bonventre, J. V. (2010). Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nature Biotechnology, 28(5), 478–485. https://doi.org/10.1038/nbt.1623
    Vasan RS, Sullivan LM, Roubenoff Ret al.Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: theFramingham Heart Study.Circulation 2003;107: 1486–1491.
    Vaziri, N.D., 2002. Pathogenesis of lead-induced hypertension: role of oxidative stress. J. Hypertens. 20. https://doi.org/10.1097/00004872-200212000-00001.
    Vaziri, N.D., 2008. Mechanisms of lead-induced hypertension and cardiovascular disease. Am. J. Physiol. - Hear. Circ. Physiol. 295 (2), H454–H465. https://doi.org/10.1152/ajpheart.00158.2008.
    Wang, A., Holladay, S. D., Wolf, D. C., Ahmed, S. A., & Robertson, J. L. (2006). Reproductive and developmental toxicity of arsenic in rodents: A review. International Journal of Toxicology, 25(5), 319–331. https://doi.org/10.1080/10915810600840776
    Wang, B.o., Du, Y., 2013. Cadmium and its neurotoxic effects. Oxid. Med. Cell. Longevity 2013, 1–12. https://doi.org/10.1155/2013/898034.
    Wang, Y., & Chen, Y. (2023). Role of MCP-1 as an inflammatory biomarker in nephropathy. Journal of Nephrology, 36(1), 45–52. https://pmc.ncbi.nlm.nih.gov/articles/PMC10794684/
    Warady BA, Chadha V. Chronic kidney disease in children: the global perspective. Pediatric nephrology. 2007;22(12):1999–2009. pmid:17310363
    Warady, B. A., Abraham, A. G., & Furth, S. L. (2020). Risk factors for rapid CKD progression in children: findings from the Chronic Kidney Disease in Children (CKiD) cohort study. Kidney International, 97(6), 1186–1194. https://doi.org/10.1016/j.kint.2020.01.037
    Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. The lancet. 2017;389(10075):1238–52.
    World Health Organization. (1991). Environmental health criteria 108: Nickel. Geneva, Switzerland: World Health Organization.
    World Health Organization. (2001). Environmental health criteria 224: Arsenic and arsenic compounds (2nd ed.). Geneva, Switzerland: World Health Organization.
    World Health Organization. (2003). Environmental health criteria 118: Inorganic mercury. Geneva, Switzerland: World Health Organization.
    World Health Organization. (2006). Environmental health criteria 234: Cobalt and inorganic cobalt compounds. Geneva, Switzerland: World Health Organization.
    WHO Guidelines Approved by the Guidelines Review Committee. WHO Global Air Quality Guidelines: Particulate Matter (PM(25( and PM(10)), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide (World Health Organization© World Health Organization 2021, Geneva, 2021).
    World Health Organization(2018a)9 out of 10 people worldwide breathe polluted air, but more countries are taking action. https://www.who.int/zh/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action
    World Health Organization(2018b)Ambient(outdoor)air quality and health. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
    World Health Organization (2018c)WHO Global Ambient Air Quality Database (update 2018). https://www.who.int/airpollution/data/cities/en/
    Wong, C. J., Moxey-Mims, M., Jerry-Fluker, J., Warady, B. A., & Furth, S. L. (2016). CKiD (CKD in children) prospective cohort study: A review of current findings. American Journal of Kidney Diseases, 68(3), 486–497. https://doi.org/10.1053/j.ajkd.2016.01.024
    Wu, X., Nethery, R. C., Sabath, B. M., Braun, D., & Dominici, F. (2020). Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Science Advances, 6(45), eabd4049. https://doi.org/10.1126/sciadv.abd4049
    Xu, W. et al. The influence of PM(2.5) exposure on kidney diseases. Hum. Exp. Toxicol. 41, 9603271211069982 (2022).
    Y. Nan, J. Yang, L. Ma, L. Jin, Y. Bai, Associations of nickel exposure and kidney function in U.S. adults, NHANES 2017-2018, J. Trace Elem. Med. Biol. 74(2022)127065.
    Yang L, Brooks CR, Xiao Set al. KIM-1-mediated phagocytosis reduces acute injury to the kidney. J Clin Invest 2015;125:1620–36. 10.1172/JCI75417.
    Yang, L., Hou, A., Wang, H., Chen, Y., He, Q., & Li, X. (2017). Long-term exposure to ambient fine particulate matter and chronic kidney disease: A cohort study in China. Environmental Pollution, 231(Part 1), 116–122. https://doi.org/10.1016/j.envpol.2017.07.024
    Yang, H.B., Teng, C.G., Hu, J., Zhu, X.Y., Wang, Y., Wu, J.Z., Xiao, Q., Yang, W., Shen, H., Liu, F., 2019a. Short-term effects of ambient particulate matter on blood pressure among children and adolescents:a cross-sectional study in a city of Yangtze River delta, China. Chemosphere 237, 124510. https://doi.org/10.1016/j.chemosphere.2019.124510
    Yang, Y., Ruan, Z., Wang, X., Yang, Y., Mason, T.G., Lin, H., Tian, L., 2019b. Short-term and long-term exposures to fine particulate matter constituents and health: a systematic review and meta-analysis. Environ. Pollut. 247, 874–882. https://doi.org/10.1016/j.envpol.2018.12.060.
    Yin, Y., Meng, F., Sui, C., Jiang, Y., & Zhang, L. (2019). Arsenic enhances cell death and DNA damage induced by ultraviolet B exposure in mouse epidermal cells through the production of reactive oxygen species. Clinical and Experimental Dermatology, 44(5), 512–519. https://doi.org/10.1111/ced.13834
    Yoshizawa, K., Rimm, E. B., Morris, J. S., Spate, V. L., Hsieh, C. C., Spiegelman, D., Stampfer, M. J., & Willett, W. C. (2002). Mercury and the risk of coronary heart disease in men. The New England Journal of Medicine, 347(22), 1755–1760. https://doi.org/10.1056/NEJMoa021437
    You YK, Huang XR, Chen HY, Lyu XF, Liu HF, Lan HY. C-reactive protein promotes diabetic kidney disease in db/db mice via the CD32b-smad3-mTOR signaling pathway. Sci Rep. 2016 May 25;6:26740.
    Young, H. A., Geier, D. A., & Geier, M. R. (2008). Thimerosal exposure in infants and neurodevelopmental disorders: An assessment of computerized medical records in the Vaccine Safety Datalink. Journal of the Neurological Sciences, 271(1–2), 110–118. https://doi.org/10.1016/j.jns.2008.04.002
    Yuan, S. et al. Long-term exposure to PM(2.5) and stroke: A systematic review and meta-analysis of cohort studies. Environ. Res. 177, 108587 (2019).
    Zalups, R.K., 2000. Evidence for basolateral uptake of cadmium in the kidneys of rats. Toxicol. Appl. Pharmacol. 164 (1), 15–23. https://doi.org/10.1006/taap.1999.8854.
    Zambelli, B., Uversky, V.N., Ciurli, S., 2016. Nickel impact on human health: An intrinsic disorder perspective. Biochim. Biophys. Acta - Proteins Proteomics 1864 (12), 1714–1731. https://doi.org/10.1016/j.bbapap.2016.09.008.
    Zanobetti A, Franklin M, Koutrakis P, Schwartz J (2009) Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environ Health 8:58. https://doi.org/10.1186/1476-069X-8-58
    Zefferino, R., Piccoli, C., Ricciardi, N., Scrima, R., & Capitanio, N. (2017). Possible mechanisms of mercury toxicity and cancer promotion: Involvement of gap junction intercellular communications and inflammatory cytokines. Oxidative Medicine and Cellular Longevity, 2017, 7028583. https://doi.org/10.1155/2017/7028583
    Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, Chen M, He Q, Liao Y, Yu X (2012) Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379:815–822. https://doi.org/10.1016/S0140-6736(12)60033-6
    Zhu X, Liu Y, Chen Y, Yao C, Che Z, Cao J (2015) Maternal exposure to fine particulate matter (PM 2.5) and pregnancy outcomes: a meta-analysis. Environ Sci Pollut Res 22:3383–3396. https://doi.org/10.1007/s11356-014-3458-7
    Zhu, W. et al. Long-term exposure to fine particulate matter relates with incident myocardial infarction (MI) risks and post-MI mortality: A meta-analysis.Chemosphere 267, 128903 (2021).
    Zhou, C., Huang, C., Wang, J., Huang, H., Li, J., Xie, Q., Liu, Y., Zhu, J., Li, Y., Zhang, D., Zhu, Q., Huang, C., 2017. LncRNA MEG3 downregulation mediated by DNMT3b contributes to nickel malignant transformation of human bronchial epithelial cells via modulating PHLPP1 transcription and HIF-1a translation. Oncogene 36(27), 3878–3889. https://doi.org/10.1038/onc.2017.14
    Zhang, Z., Dong, B., Li, S., Chen, G., Yang, Z., Dong, Y., ... Ma, J. (2017). Exposure to ambient particulate matter air pollution, blood pressure, and hypertension in children and adolescents: A national cross-sectional study in China. Environmental Health, 16(1), 103. https://doi.org/10.1186/s12940-017-0311-6
    Zhang, Z., Guo, C., Gong, T., Zhu, Y., Li, Z., & Li, P. (2018). Long-term exposure to fine particulate matter air pollution and renal inflammation in mice. Environmental Science and Pollution Research, 25(21), 20903–20912. https://doi.org/10.1007/s11356-018-2285-1

    QR CODE