簡易檢索 / 詳目顯示

研究生: 蔡明潔
Tsai, Ming-Chieh
論文名稱: 磊晶反鐵磁拓樸絕緣體MnBi2Te4薄膜之結構與磁性電性研究
Study on the structure and magnetoelectric properties of epitaxial growth antiferromagnetic topological insulator MnBi2Te4
指導教授: 黃榮俊
Huang, Jung-Chung
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 73
中文關鍵詞: 分子束磊晶磁性拓樸絕緣體角解析光電子能譜反鐵磁性MnBi2Te4
外文關鍵詞: Molecular beam epitaxy, Topological insulator, ARPES, Antiferromagnetic, MnBi2Te4
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拓樸絕緣體特殊的能帶結構導致此種材料在內部絕緣而在邊緣或表面導電,若是將磁性摻雜於拓樸絕緣體,則會破壞時間反衍對稱性(time reversal symmetry),此時便會出現量子異常霍爾效應(Quantum Anomalous Hall Effect, QAHE)、拓樸軸子態(topological axion states)和馬約拉納費米子(Majonara fermion)這些特殊的量子態,因此磁性拓樸絕緣體為日後研究量子拓樸、電子自旋學以及其應用的重要載體,其中MnBi2Te4即是被預測為反鐵磁性拓樸絕緣體。
    本實驗以分子束磊晶系統(Molecular Beam Epitaxy, MBE)成長反鐵磁性拓樸絕緣體MnBi2Te4薄膜,調整成長樣品時的參數得到結構晶向良好的樣品,並研究其物理性質。以X光繞射(X-ray Diffraction, XRD)分析樣品的晶格結構,改變成長樣品時的Mn與Bi的分壓比,以抑制雜向產生(如:MnTe)。藉由原子力顯微鏡(Atomic Force Microscope, AFM)觀察不同成長溫度的樣品表面,調整成長的基板溫度使樣品膜面平整度達到最佳,觀察到MnBi2Te4層狀堆疊的結構。利用穿透式電子顯微鏡(Transmission Electron Microscope, TEM)觀察薄膜剖面確認層狀結構和能量散佈分析儀(Energy Dispersive Spectrometer, EDS)分析薄膜樣品中的化學成分及比例。由角解析光電子能譜(Angle resolved photoemission spectroscopy, ARPES)量測MnBi2Te4的能帶結構,在價帶與導帶的能隙中發現其表面態,證實MnBi2Te4為拓樸絕緣體。
    最後探討不同薄膜厚度之MnBi2Te4薄膜的磁性與電性。磁性方面,由超導量子干涉儀(Super conducting Quantum Interference Device, SQUID)量測磁化率及磁滯曲線,在低於涅爾溫度(Neel temperature)時MnBi2Te4呈現反鐵磁性,且不同薄膜厚度涅爾溫度不同。電性方面,由物理性質量測系統(Physical Properties Measurement Systems, PPMS)在低溫量測霍爾電阻Rxy及磁阻Rxx,由量測結果可知載子傳輸類型為n型載子為主,霍爾電阻與磁阻皆會因MnBi2Te4薄膜本身的反鐵磁性與外加磁場而有所變化。
    關鍵字:分子束磊晶、MnBi2Te4、磁性拓樸絕緣體、角解析光電子能譜、反鐵磁性

    In this study, MnBi2Te4 thin film were grown on sapphire (0001) substrate with molecular beam epitaxy (MBE) system. Tuning Mn/Bi flux ratio and growth temperature are effective to fabricate high quality and single phase of MnBi2Te4 thin film., the structural characterization of MnBi2Te4 thin film had been verified by X-ray diffraction (XRD), indicating that growth of a single crystal in the c-axis direction. Both atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM) show the layered structure of MnBi2Te4 with septuple layers (SLs) structure. The band structure of MnBi2Te4 thin film investigated by angle resolved photoemission spectroscopy (ARPES) measurements shows the exist of surface state, which confirm the MnBi2Te4 thin film is a topological insulator (TI). The magnetic properties of different thickness MnBi2Te4 thin film were investigated with superconducting quantum interference device (SQUID) measurement, which reveal that MnBi2Te4 have antiferromagnetic behavior, and its Neel temperature is about 22~23K. The transport properties of MnBi2Te4 thin films were studied with physical properties measurement system (PPMS) measurement. MnBi2Te4 thin films exhibit a n-type transport behavior in the Hall effect. Understanding how to fabricate MnBi2Te4 is the key to synthesizing new TI materials with antiferromagnetic properties, which together are routes to realize and control exotic quantum phenomena.
    Key words: Molecular beam epitaxy, MnBi2Te4, Topological insulator, ARPES, Antiferromagnetic

    摘要 i Abstract ii 誌謝 viii 目錄 ix 圖目錄 xii 表目錄 xvi 第一章、緒論 1 1-1 拓樸絕緣體的發展與磁性拓樸絕緣體 1 1-2 文獻回顧 4 1-2-1 文獻一 4 1-2-2 文獻二 8 1-2-3 文獻三 12 1-3 研究動機 15 第二章、實驗相關理論原理 16 2-1 薄膜成長原理39 16 2-1-1 沉積原理 16 2-1-2 成長形式 17 2-2 磁性41 18 2-3 霍爾效應10 21 第三章、儀器介紹與實驗流程 23 3-1 製程儀器與流程 23 3-1-1 分子束磊晶系統(Molecular Beam Epitaxy, MBE) 23 3-1-2 薄膜製成流程 27 3-1-3 微影蝕刻製程儀器 28 3-1-4 微影蝕刻製程流程 30 3-2 量測系統 32 3-2-1 X光繞射儀(X-ray diffraction, XRD) 32 3-2-2 原子力顯微鏡(Atomic Force Microscope, AFM) 34 3-2-3 穿透式電子顯微鏡(Transmission electron microscope, TEM) 36 3-2-4 角解析光電子能譜(Angle-resolved photoemission spectroscopy, ARPES)45 38 3-2-5 超導量子干涉儀(Super conducting Quantum Interference Device Vibrating Sample Magnetometer,SQUID VSM) 40 3-2-6 物理性質量測系統(Physical Properties Measurement Systems, PPMS) 41 第四章、實驗結果與討論 42 4-1 實驗架構 42 4-2 晶體結構 43 4-2-1 XRD 43 4-2-2 TEM 47 4-3 元素分析 49 4-4 表面形貌 50 4-5 能帶結構 52 4-6 磁性分析 55 4-7 電性分析 65 第五章、結論 70 第六章、參考文獻 71

    Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys Rev Lett 95, 226801, doi:10.1103/PhysRevLett.95.226801 (2005).
    Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757-1761, doi:10.1126/science.1133734 (2006).
    Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys Rev Lett 95, 146802, doi:10.1103/PhysRevLett.95.146802 (2005).
    Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics 5, 438-442, doi:10.1038/nphys1270 (2009).
    Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Physical Review B 76, doi:10.1103/PhysRevB.76.045302 (2007).
    Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970-974, doi:10.1038/nature06843 (2008).
    Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics 5, 398-402, doi:10.1038/nphys1274 (2009).
    Hsieh, D. et al. Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys Rev Lett 103, 146401, doi:10.1103/PhysRevLett.103.146401 (2009).
    Qi, X.-L. & Zhang, S.-C. The quantum spin Hall effect and topological insulators. Physics Today 63, 33-38, doi:10.1063/1.3293411 (2010).
    Chang, C. Z. & Li, M. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators. J Phys Condens Matter 28, 123002, doi:10.1088/0953-8984/28/12/123002 (2016).
    Day, C. Quantum spin Hall effect shows up in a quantum well insulator, just as predicted. Physics Today 61, 19-23, doi:10.1063/1.2835139 (2008).
    Kou, X. et al. Interplay between different magnetisms in Cr-doped topological insulators. ACS Nano 7, 9205-9212, doi:10.1021/nn4038145 (2013).
    Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci Adv 5, eaaw5685, doi:10.1126/sciadv.aaw5685 (2019).
    Haldane, F. D. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly". Phys Rev Lett 61, 2015-2018, doi:10.1103/PhysRevLett.61.2015 (1988).
    Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61-64, doi:10.1126/science.1187485 (2010).
    Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167-170, doi:10.1126/science.1234414 (2013).
    Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Physical Review B 78, doi:10.1103/PhysRevB.78.195424 (2008).
    Mong, R. S. K., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators. Physical Review B 81, doi:10.1103/PhysRevB.81.245209 (2010).
    He, Q. L. et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure. Science 357, 294-299, doi:10.1126/science.aag2792 (2017).
    Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nature Materials 14, 473-477, doi:10.1038/nmat4204 (2015).
    Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric Polarizability and Axion Electrodynamics in Crystalline Insulators. Physical Review Letters 102, 146805, doi:10.1103/PhysRevLett.102.146805 (2009).
    Konig, M. et al. Quantum spin hall insulator state in HgTe quantum wells. Science 318, 766-770, doi:10.1126/science.1148047 (2007).
    Jin, Y. J., Wang, R., Xia, B. W., Zheng, B. B. & Xu, H. Three-dimensional quantum anomalous Hall effect in ferromagnetic insulators. Physical Review B 98, 081101, doi:10.1103/PhysRevB.98.081101 (2018).
    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Physical Review B 83, 205101, doi:10.1103/PhysRevB.83.205101 (2011).
    Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys Rev Lett 107, 186806, doi:10.1103/PhysRevLett.107.186806 (2011).
    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides. Physical Review X 5, 011029, doi:10.1103/PhysRevX.5.011029 (2015).
    Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Dirac fermions in an antiferromagnetic semimetal. Nature Physics 12, 1100-1104, doi:10.1038/nphys3839 (2016).
    Hua, G. et al. Dirac semimetal in type-IV magnetic space groups. Physical Review B 98, 201116, doi:10.1103/PhysRevB.98.201116 (2018).
    Yang, S. Q. et al. Odd-Even Layer-Number Effect and Layer-Dependent Magnetic Phase Diagrams in MnBi2Te4. Physical Review X 11, 011003, doi:ARTN 011003
    10.1103/PhysRevX.11.011003 (2021).
    Li, H. et al. Antiferromagnetic topological insulator MnBi2Te4: synthesis and magnetic properties. Phys Chem Chem Phys 22, 556-563, doi:10.1039/c9cp05634c (2020).
    Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895-900, doi:10.1126/science.aax8156 (2020).
    Ge, J. et al. High-Chern-number and high-temperature quantum Hall effect without Landau levels. National Science Review 7, 1280-1287, doi:10.1093/nsr/nwaa089 (2020).
    Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat Mater 19, 522-527, doi:10.1038/s41563-019-0573-3 (2020).
    Ovchinnikov, D. et al. Intertwined Topological and Magnetic Orders in Atomically Thin Chern Insulator MnBi2Te4. Nano Lett 21, 2544-2550, doi:10.1021/acs.nanolett.0c05117 (2021).
    Weng, H., Yu, R., Hu, X., Dai, X. & Fang, Z. Quantum anomalous Hall effect and related topological electronic states. Advances in Physics 64, 227-282, doi:10.1080/00018732.2015.1068524 (2015).
    Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moire heterostructure. Science 367, 900-903, doi:10.1126/science.aay5533 (2020).
    Zhang, D. et al. Topological Axion States in the Magnetic Insulator MnBi2Te4 with the Quantized Magnetoelectric Effect. Phys Rev Lett 122, 206401, doi:10.1103/PhysRevLett.122.206401 (2019).
    Otrokov, M. M. et al. Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet MnBi2Te4 Films. Phys Rev Lett 122, 107202, doi:10.1103/PhysRevLett.122.107202 (2019).
    J.C.A.Huang. pH. D Thesis, University of Illinois, (1992).
    林宗謀. 磊晶三元拓樸絕緣體之費米能接調控與電性研究 碩士 thesis, 國立成功大學, (2019).
    Jiles, D. Introduction to Magnetism and Magnetic Materials. 3rd Edition edn, 626 (2015).
    劉昱宏. 利用分子束磊晶成長拓樸絕緣體鉍化硒參雜銻薄膜之特性分析與場效之研究應用 博士 thesis, 國立成功大學, (2017).
    董弈. 調控多元鉍化硒合金拓樸絕緣體其電子結構、傳輸及磁性研究 博士 thesis, 國立成功大學, (2017).
    王洸富. 屏蔽電荷對180度域壁成核動態機制之影響 碩士 thesis, 國立成功大學, (2010).
    莊霈于. 以角解析光電子能譜術探討新穎拓樸材料晶體與電子結構之物理特性 博士 thesis, 國立成功大學, (2018).
    Damascelli, A. Probing the electronic structure of complex systems by ARPES. Phys Scripta T109, 61-74, doi:DOI 10.1238/Physica.Topical.109a00061 (2004).
    Chuang, P.-Y. et al. Anti-site defect effect on the electronic structure of a Bi2Te3 topological insulator. RSC Advances 8, 423-428, doi:10.1039/c7ra08995c (2018).

    無法下載圖示 校內:2026-07-23公開
    校外:2026-07-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE