| 研究生: |
鄭銘琳 Cheng, Ming-Ling |
|---|---|
| 論文名稱: |
兩相流輸送及凸起氣體擴散層對質子交換膜燃料電池性能之效應研究 Study on Effect of Two-Phase Transport and Prominent GDL on Performance of Proton Exchange Membrane Fuel Cell |
| 指導教授: |
吳鴻文
Wu, Horng-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 兩相輸送 、質子交換膜燃料電池 、液態水效應 、具凸起氣體擴散層 |
| 外文關鍵詞: | Two-phase transport, PEM fuel cell, liquid water effects, Prominent GDL Layer |
| 相關次數: | 點閱:66 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
質子交換膜燃料電池具有其工作溫度較低、高效率、無汙染、低噪音、啟動快、並可於室溫達到高功率電流密度輸出等優點,被視為下一代動力系統或攜帶式電源的最佳選擇。本論文係考慮液態水對電池性能影響,且將數值結果與實驗數據比較。本論文也探討電池操作溫度、陰陽極加濕溫度、陽極化學計量、陰極化學計量及氣體擴散層幾何形狀對溫度分佈、氧氣濃度及液態水分佈及燃料電池性能的效應。
結果顯示,在考慮液態水效應下,數值模擬所得結果與實驗數據較為接近,因能夠接近真實操作情況;電池性能以操作溫度為333 K比其他溫度(313 K與353 K)較好;以陽極化學計量為1.5 X比其他計量(1.2 X與1.8 X)較好;以陰極化學劑量為2.5 X比其他計量(1.5 X與2.0 X)較好。改變氣體擴散層幾何形狀方面,具凸起氣體擴散層之燃料電池確實有助於提升電池性能並改善流場特性。
The major advantages of proton exchange membrane fuel cell (PEMFC) are low-temperature operation, high efficiency, no emission, low noise, and quick starting to high energy and current density under room temperature. Therefore, they are valued as the best choice in the next generation dynamic system or the portable power source in recent years. This thesis is to consider the influence of liquid water on performance of PEMFC and compare numerical results with experimental ones. This thesis also explores the effect of fuel cell temperature, anode and cathode humidification temperatures, anode and cathode stoichiometric flow ratios, and the geometry of gas diffusion layer on the temperature distribution, oxygen concentration and liquid water distribution, and the performance of PEMFC.
The results showed that considering the liquid water effect, numerical simulation results are more agreeable with the experimental data because of being closer to realistic operating conditions. The cell performance is better for 333 K of fuel cell temperature than for others temperatures (313 K and 353 K), for 1.5 X of anode stoichiometric flow ratio than for other (1.2 X and 1.8 X), and for 2.5 X of cathode stoichiometric flow ratio than for others (1.5 X and 1.8 X). Changing the geometry of gas diffusion layer, the PEMFC with Prominent GDL Layer does to improve the performance and the flow characteristics.
1. 方良吉,“2010年能源產業技術白皮書”,經濟部能源局,2010。
2. 李芳正,“新能源”,新文京開發出版股份有限公司,2009。
3. 毛宗強,“氫能–21世紀的綠色能源”,新文京開發出版股份有限公司,2008。
4. 黃鎮江,“燃料電池(修訂版)”,全華圖書,2007。
5. Xianguo Li, “Principles Of Fuel Cells”, Taylor & Francis Group, LLC, 2006.
6. Barbir Frano, PEM Fuel Cells:Theory and Practice, Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo, Vol.1-3, No. 1-71, 2005.
7. Larminie, J. and Dicks, A., “Fuel Cell Systems Explained”, John Wiley, New York, pp.1-418, 2000.
8. T. Berning, D.M Lu, N. Djilali, “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell”, Journal of Power Sources, Vol.106, pp. 284-294, 2002.
9. Shan-Hai Ge, Bao-Lian Yi, “A mathematical model for PEMFC in different flow modes”, Journal of Power Sources, Vol.124, pp. 1-11, 2003.
10. Natarajan, D., Nguyen, T. V., “Three dimensional effects of liquid water flooding in the cathode of a PEM fuel cell”, Journal of Power Sources, Vol.115, pp. 66-80, 2003.
11. Kazim A., Forges P., and Liu H. T., “Effects of cathode operating conditions on performance of a PEM fuel cell with interdigitated flow fields”, International Journal of Energy Research, Vol.27, pp. 401-414, 2003.
12. Pei-Wen Li, Laura Schaefer, Qing-Ming Wang, Tao Zhang, Minking K. Chyu, “Multi-gas transportation and electrochemical performance of a polymer electrolyte fuel cell with complex flow channels”, Journal of Power Sources, Vol.115, pp. 90-100, 2003.
13. N. P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, “A two-dimensional computational model of a PEMFC with liquid water transport”, Journal of Power Sources, Vol.128, pp. 173-184, 2004.
14. Sukkee Um, C.Y. Wang, “Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells”, Journal of Power Sources, Vol.125, pp. 40-51, 2004.
15. Galip H. Guvelioglu, Harvey G. Stenger, “Main and interaction effects of PEM fuel cell design parameters”, Journal of Power Sources, Vol.156, pp. 424-433, 2005.
16. P. Zhou, C.W. Wu, “Numerical study on the compression effect of gas diffusion layer on PEMFC performance”, Journal of Power Sources, Vol.170, pp. 93-100, 2007.
17. Prodip K. Das, Xianguo Li, Zhong-Sheng Liu, “Analytical approach to polymer electrolyte membrane fuel cell performance and optimization”, Journal of Electroanalytical Chemistry, Vol.604, pp. 72-90, 2007.
18. Adam Z. Weber, John Newman, “Effects of membrane- and catalyst-layer-thickness nonuniformities in polymer-electrolyte fuel cells”, Journal of Electrochemical Society, Vol.154, pp. 405-412, 2007.
19. 莊英志,“流道數對具蛇型流場之質子交換膜燃料電池性能影響”,華梵大學機電工程學系研究所碩士論文,2008年。
20. 廖致誠,“流道幾何及尺寸效應對質子交換膜燃料電池性能之影響”,華梵大學機電工程學系研究所碩士論文,2008年。
21. Prodip K. Das, Xianguo Li, Zhong-Sheng Liu, “A three-dimensional agglomerate model for the cathade catalyst layer of PEM fuel cells”, Journal of Power Sources, Vol.179, pp. 186-199, 2008.
22. Shiang-Wuu Perng, Horng-Wen Wu, “Heat transfer in a PEMFC flow channel”, Applied Thermal Engineering, Vol.29, pp. 3579-3594, 2009.
23. Horng-Wen Wu, Hui-Wen Ku, “The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method”, Applied Energy, Vol.88, pp. 4879-4890, 2011.
24. Bird, R. B., Stewart, W. and Lightfoot, E. N., “Transport Phenomena”, John Wiley, New York, 1960.
25. Bruggeman, D. A. G., “Calculations of various physical constants of heterogeneous substance : part I, dielectric constants and conductivity of isotropic substance”, Annalen der Physik Vol.24, pp.636-699, 1935.
26. P. Costamagna, K. Honegger, “Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization”, Journal of The Electrochemical Society, Vol.145, pp. 3995-4007, 1998.
27. Jin Hyun Nam, Massoud Kaviany, “Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium”, International Journal of Heat and Mass Transfer, Vol.46, pp. 4595-4611, 2003.
28. Ugur Pasaogullari, C. Y. Wang, “liquid water transport in gas diffusion layer of polymer electrolyte fuel cells”, Journal of The Electrochemical Society, Vol.151, pp. A399-A406, 2004.
29. T. E. Springer., T.A. Zawodzinski, S. Gottesfeld “Polymer electrolyte fuel cell model”, Journal of The Electrochemical Society, Vol.138, pp. 2334-2342, 1991.
30. Hyunchul Ju, Chao-Yang Wang, “Experimental validation of a PEM fuel cell model by current distribution data”, Journal of The Electrochemical Society, Vol.151, pp. A1954-A1960, 2004.
31. John M. Stockie, Keith Promislow, Brian Wetton, “A finite volume method for multicomponent gas transport in a porous fuel cell electrode”, International Journal for Numerical Methods in Fluids, Vol.41, pp. 577-599, 2003.
32. Elaine S. Oran, Jay P. Boris, “Numerical simulation of reactive flow”, Cambridge University Press, 2001.
33. R. B. Abernethy, R. P. Benedict, R. B. Dowdell “ASME measurement uncertainty”, Transactions of the ASME: Journal of Fluids Engineering, Vol.107, pp. 161-164, 1985.