| 研究生: |
吳彥鋌 Wu, Yen-Ting |
|---|---|
| 論文名稱: |
積層陶瓷電容器電性不良之研究 Study on the Failure of Electrical Performance for Multilayer Ceramic Capacitors |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 晶粒尺寸 、積層陶瓷電容器製程 、X5R 、電性良率 、積層陶瓷電容器 |
| 外文關鍵詞: | particle size, MLCC process procedure,X5R, flash yield, MLCC |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的發展日新月異,電子產品無一不是快速進化且朝向輕薄短小高性能的需求趨勢發展;陶瓷電容器也不例外,朝小型化、晶片化及高電容量來發展,其中以X5R及X7R的要求更甚,尤其X5R及X7R的高容產品大多由日本廠商所壟斷,因此驅使台灣廠商的積層陶瓷電容器技術需不斷更新。其中製作高電容值積層陶瓷電容器之技術更是刻不容緩。
本文針對使用2.6μm陶瓷薄膜所開發的X5R產品,利用實體破壞性分析、掃描式電子顯微鏡及能量散射光譜儀作微觀的缺點模式分析得知,陶瓷薄帶薄膜化後,其電性不良的原因有針孔(pin-hole)、陶瓷粉末堆積程度不良(poor powder packing)及介電層中陶瓷晶粒過大(Coarse grain)等問題,而於製程時其漿料中的含水率、固含量、及球磨後陶瓷材料的粒徑皆會影響這些成因。
降低漿料含水率可有效降低針孔,提高漿料固含量能改善陶瓷粉末堆積程度,可提高破壞電壓水準及增加電性良率,而延長球磨時間可獲得較小的陶瓷材料的粒徑及較窄的粒徑分佈,可提高電性良率、絕緣電阻、破壞電壓及高加速壽命測試水準。
With the rapid development in electronic products for a smaller form factor and high performance, the demand for high-capacitance MLCC, especially for X5R and X7R is great. Currently, both high-capacitance X5R and X7R MLCC products are mostly dominated by the Japanese manufacturers and Taiwan urgently needs to develop them to keep her competitiveness.
This study focuses on reducing the defects of X5R MLCC products manufactured from the 2.6 μm ceramic films. The Destructive Physical Analysis, Scanning Electron Microscopy, and Energy Dispersive Spectrometer (EDS) are used to reveal the microscopic defect modes, including pin-holes, poor power packing and coarse grains in the dielectric layer, etc. The effects of the slip moisture content, solid content, and particle size of the ceramic materials after the ball milling are also examined.
The results show that reducing the moisture content of the slip can reduce the pin-hole; increasing the solid content of the slip can improve the micro powder packing level which can increase the break down voltage (BDV) level and improve the flash yield. Extending the milling time can result in smaller ceramic particle sizes and narrow particle size distributions, which can improve the flash yield, insulation resistance, BDV, and highly accelerated life testing level.
參考文獻
[1] 歐國和,“高容積積層陶瓷電容器之研究”, 國立成功大學電機工程研究所碩士論文, 2007.
[2] 朱永星,“高容量晶片電容簡介”,工業材料,第135期,87年3月.
[3] 陳聰文,“積層陶瓷電容器製程簡介”,工業材料,第108期,pp.72-80,84年12月.
[4] 李標榮,莫以豪,無機介電材料,上海科技出版社,1996.
[5] 陳奕志,“負溫度係數補償型卑金屬積層陶瓷電容之研製”, 私立義守大學電子工程研究所碩士論文, 2004.
[6] 李波,“溫度穩定性MLCC鎳電極瓷料的研究”,成都電子科技大學碩士論文, 2005.
[7] 謝煜弘,電子材料第三版,新文京開發出版有限公司, 2005.
[8] Zhilun Gui, Hong Cai and Longtu Li, “Composite MLCCs with X7R Characteristics”,IEEE., pp.821-824, 2001.
[9] 曲遠方,功能陶瓷及應用,化學工業出版社,2003.
[10] X. Duan, W. Luo,W. Wu, “Dielectric response of ferroelectric relaxors”, Solid State Communication, Vol.114(11),pp.597-600, 2000.
[11] Sanjiv Kumar, V.S. Raju, T.R.N. Kutty, “Investigations on the chemical states of sintered barium titanate by X-ray photoelectron spectroscopy ”,Applied surface science, Vol.206(1-4),pp.250-261,2003.
[12] T.J. Bastow, H.J. Whitfield, “137Ba and 47,49Ti:Electric Field Gradients in Non-cubic phase of BaTiO3 ”,Solid state Communications, Vol.117(8),pp.483-488,2001.
[13] 黃義閔,“施體、受體離子在X7R陶瓷電容介電溫度穩定性質上扮演的角色”, 國立成功大學材料科學及工程科學研究所碩士論文, 2000.
[14] 郭寶聲,“不同鋇鈦比對鈦酸鋇燒結行為微結構及電性之研究”, 國立台灣大學材料科學及工程學研究所碩士論文, 2002.
[15] 李源弘,“鈦酸鋇陶瓷之特性與應用”,化工技術,第一卷,第6期,pp.78-92,82年09月.
[16] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2d ed., John Wiley & Sons, New York, 1976.
[17] Saburi, Journal of the Physical Society of Japan., 14[9],pp.115-1174,1959.
[18] 黃淑敏,“鈦酸鋇介電陶瓷可靠度之研究”, 國立台灣大學材料科學及工程學研究所碩士論文, 2002.
[19] H. Kniekamp, W. Heywang, “ Depolarizaion effects in polycrystalline BaTiO3 ”, Z.Angew.Phys., 6(9), pp.385-390 1954.
[20] E.J. Huibregtse, D.R. Young , “Triple Hysteresis Loops and the Free-Energy Function in the Vicinity of the 5oC Transtion in BaTiO3”,Physical Review, Vol.103(6), pp.1705-1711, 1956.
[21] W.R. Bussem, L.E. Cross, “Phenomenological Theory of High Permitivity in Fined-Grain Barium Titanate”, Journal of American Ceramic Society., Vol.49(1), pp.33-36, 1966.
[22] D. Hennigs, G. Rosenstein, “Temperature stable dielectric based on chemically inhomogeneous BaTiO3”, Journal of American Ceramic Society., Vol.67(4),pp.249-254, 1984.
[23] Y. Park, Y.H. Kim, H.G. Kim, “The effect of grain size on dielectric behavior of BaTiO3 based X7R materials”, Materials Letters, Vol.28(1-3) , pp.101-106,1996.
[24] Manfred Kahn, “Influence of grain growth on dielectric properties of Nb-doped BaTiO3”, Journal of American Ceramic Society., Vol.54(9), pp.455-457, 1971.
[25] MR. Leonard, A. Safari, “Crystallite and grain size effects in BaTiO3 ”, Proceedings of the Tenth IEEE International Symposium, Applications of Ferroelectric,1996.ISAF 96,pp.1003-1005, 1996.
[26] G. Arlt, D. Hennings , and G. de With “Dielectric properties of fine-grained barium titanate ceramics, ”Journal of Applied Physics, Vol.58(4), pp.1619-1625, 1985.
[27] Xiao-Hui Wang, Ren-Zheng Chen, “The grain size effect on dielectric properties of BaTiO3 based ceramics,” Materials Science and Engineering:B, Vol.99(1-3), pp.199-202, 2003.
[28] 賈德昌,電子材料,哈爾濱工業大學出版社,2000.
[29] 王宏文,“鈦酸鋇添加釹之電性研究”, 私立中原大學化學系研究所碩士論文, 2002.
[30] M. Willson, J. Symes, “Low fire X7R dielectric compositions and capacitors made therefrom,” US Patent 5,571,767 (1996).
[31] H. Mather, N. Adams, “High dielectric constant X7R ceramic capacitor, and powder for making,” US Patent 6,043,174 (2000).
[32] Hiroshi Kishi , Youichi Mizuno, and Hirokzu Chazono,“Base-Metal Electrode Multilayer Ceramic Capacitors:Past, Present and Future Perspectives”, Japanese Journal of Applied Physics., Vol.42, No.1, pp.1-15, 2003.
[33] Hisamitsu Shizuno,Shinyo Kusumi,“Properties of Y5V multiplayer ceramic capacitors with Nickel electrodes”, Japanese Journal of Applied Physics., Vol. 32,No.9B, pp.4380-4386, 1993.
[34] 劉恩進,“以固態反應法開發能在還原氣氛中燒結之Y5V介電陶瓷配方粉體”,私立義守大學材料科學及工程學研究所碩士論文, 2002.
[35] 宋志剛,“積層陶瓷電容器產業”,工業材料,第108期,84年12月.
[36] 施劍林,現代無機非金屬材料工藝學,吉林科學科技出版社,1993.
[37] 高濂,孫靜,劉陽橋,奈米粉體的分散及表面改性,五南出版社,2006.
[38] 呂宗昕,奈米科技與光觸媒,尚周出版社,2006.
[39] Xiaohui Wang, Renzheng Chen, “Dielectric properties of BaTiO3-based ceramics sintered in reducing atmospheres prepared from nano-powders”, Ceramics International., Vol. 30(7), pp.1895-1898, 2004.
[40] Youichi Mizuno, Tomoya Hagiwara,“Effect of milling process on core-shell microstructure and electrical properties for BaTiO3-based Ni-MLCC”, Journal of the European Ceramic Society., Vol. 21(10-11), pp.1649-1652, 2001.
[41] 李訓宇,“水系鈦酸鋇懸浮體之分散與流變行為研究”, 私立文化大學材料科學與製造研究所碩士論文, 2002.
[42] 劉逸文,“油系鈦酸鋇漿料之分散及流變性質對薄帶特性及陶瓷體介電強度之影響”, 國立成功大學資源工程研究所碩士論文, 2003.
[43] Dang-Hyok Yoon, Burtrand I. Lee, “ Processing of barium titanate tapes with different binders for MLCC applications-Part II:Comparison of the properties”, Journal of the European Ceramic Society., Vol. 24(5), pp.753-761, 2004.
[44] 何健成,蔡聰麟,“積層陶瓷電容器製程技術簡介I.生胚製程”,化工,第51卷,第4期, pp.43-52,2004.
[45] 吳平耀,“超薄塗佈技術簡介-精密的製造師”, 工業材料,第91期, pp.113-119,92年2月.
[46] 施劭儒,“網印製程模擬之探討”, 工業材料,第192期, pp.153-158,91年12月.
[47] Sang-Gye Lee , Ungyu Paik, “Control of residual stresses with post process in BaTiO -based Ni-MLCCs”, Materials and Design, Vol. 24(3), pp.169-176, 2003.
[48] 岳家葳,“多層陶瓷製程切割技術介紹”, 工業材料,第143期, pp.137-143,87年11月.
[49] Ungyu Paika, Kyung-Moo Kangb, “Binder removal and microstructure with burnout conditions in BaTiO3 based Ni-MLCCs”, Ceramics International., Vol. 29(8), pp.939-946, 2003
[50] 林建邦,何健成,蔡聰麟,“積層陶瓷電容器製程技術簡介II.熟胚製程”,化工,第51卷,第4期, pp.43-52,2004.
[51] Yong-xiong Lai, Hao Tang,“Study on sintering Process of Ni/Cu Electronic MLCC”, Electronic component and Materials., Vol. 24,No.7 pp.21-24, 2005.
[52] 劉繼煥,“積層陶瓷電容製程中電容晶片端面弧度之自動化檢驗與製程管制探討”, 私立朝陽科技大學工業工程與管理系研究所碩士論文, 2000.
[53] 袁穎,“片式多層陶瓷電容器銀銅粉電極材料之研究”, 西安理工大學材料系研究所碩士論文, 2006.
[54] “NCG-3000 High Quality Ceramic Laminater operation manual”,New Create Corportion.
[55] “ Design and Process Guidelines for Use of Ceramic Chip Capacitors”, CALCE Electronic Products and Systems Center, University of Maryland.
[56] T.I. Prokopowicz and A.R. Vaskas, “ Research and Development, Intrinsic Reliability, Subminiature Ceramic Capacitors”, Final Report,ECOM-90705F, NTIS AD-864068, p.175, 1969.
校內:2020-12-31公開