簡易檢索 / 詳目顯示

研究生: 李家如
Li, Chia-Ju
論文名稱: 含不對稱碳鏈離子對雙親分子及帶負電脂質之陰陽離子液胞的物理穩定性及維他命E醋酸酯包覆效率
Physical stability and vitamin E acetate encapsulation efficiency of catanionic vesicles containing asymmetric alkyl-chained ion pair amphiphile and anionic lipid
指導教授: 張鑑祥
Chang, Chien-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 88
中文關鍵詞: 陰陽離子液胞膽固醇Franz diffusion cell離子對雙親分子維他命E醋酸酯
外文關鍵詞: catanionic vesicle, cholesterol, Franz diffusion cell, ion pair amphiphile, vitamin E acetate
相關次數: 點閱:130下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別將陽離子型界面活性劑tetradecyltrimethylammonium bromide (TTMAB)及hexadecyltrimethylammonium bromide(HTMAB)與陰離子型界面活性劑sodium dodecylsulfate(SDS)於水相中以等莫耳比例混合,製備出兩種不同碳鏈長度之離子對雙親分子(ion pair amphiphile, IPA)tetradecyltrimethylammonium-dodecylsulfate(TTMA-DS)及hexadecyltrimethylammonium-dodecylsulfate(HTMA-DS)。然後添加適量的雙十六碳鏈磷酸鹽(dihexadecyl phosphate, DHDP),以強制形成之製程製備出帶負電的陰陽離子液胞(catanionic vesicle),並探討利用此液胞做為維他命E醋酸酯之傳輸載體的可行性。
    由不同混合比例之TTMA-DS/DHDP所形成的陰陽離子液胞,皆有物理穩定性不足的問題,添加適量之膽固醇則可提升液胞的物理穩定性。就TTMA-DS及HTMA-DS分別與DHDP所形成之液胞而言,可能由於HTMA-DS中的HTMA與DHDP的碳鏈長度相同,使得HTMA-DS/DHDP液胞雙層膜內的缺陷較少,因而有較佳的物理穩定性。以螢光偏極化及紅外光譜法分析膽固醇對液胞雙層膜流動性的影響,則發現在IPA相轉移溫度之下添加膽固醇,可以使液胞雙層膜中分子碳氫鏈的排列變得較鬆散。
    利用以上所提之陰陽離子液胞包覆維他命E醋酸酯時,發現液胞粒徑有變大的趨勢,顯示維他命E醋酸酯成功地被包覆在液胞雙層膜內。此外,維他命E醋酸酯的包覆對於含HTMA-DS之液胞的物理穩定性有明顯的提升,但對於含TTMA-DS之液胞的物理穩定性影響則很有限。就包覆效率而言,含TTMA-DS之液胞的包覆效率略比含HTMA-DS的高。由於膽固醇比維他命E醋酸酯更具疏水性,能競爭插排入液胞雙層膜內,因此膽固醇在液胞雙層膜中所占的比率可能會影響液胞包覆維他命E醋酸酯的能力。
    本研究也使用Franz diffusion cell裝置針對不同孔洞大小的醋酸纖維素膜(cellulose acetate membrane),探討液胞及利用高分子膠化後之液胞的穿透行為。結果顯示平均粒徑87 nm的液胞並不能順利通過100及200 nm大小孔洞的膜,但是可以通過400 nm孔洞的膜。經由高分子carbopol940膠化的液胞,其穿透過醋酸纖維素膜的能力則會下降。

    In this study, two ion pair amphiphiles(IPAs), tetradecyltrimethylammonium-dodecylsulfate(TTMA-DS)and hexadecyltrimethylammonium-dodecylsulfate(HTMA-DS), with different hydrocarbon chain lengths were prepared by mixing cationic surfactants, tetradecyltrimethylammonium bromide(TTMAB)and hexadecyltrimethylammonium bromide (HTMAB), respectively, with anionic surfactant, sodium dodecylsulfate(SDS), at equal molar ratio in aqueous phases. Then with the addition of proper amounts of dihexadecyl phosphate(DHDP), negatively charged catanionic vesicles were fabricated by a forced formation approach and feasibility of using the vesicles as vitamin E acetate carriers was investigated.
    The catanionic vesicles formed from different mixing ratios of TTMA-DS to DHDP had a problem of poor physical stability. One can enhance the physical stability of the vesicles by adding optimal amounts of cholesterol. For the vesicles formed from TTMA-DS and HTMA-DS, respectively, with DHDP, probably because the hydrocarbon chain length of HTMA in HTMA-DS was the same as that of DHDP, the bilayers of HTMA-DS/DHDP vesicles had fewer defects and thus had better physical stability. From the fluorescence polarization and Fourier transform infrared analyses of the cholesterol effect on the vesicular bilayer fluidity, it was found that adding cholesterol below the phase transition temperature of IPA could decrease the order of the molecule alkyl chains in the vesicular bilayers.
    By using the above catanionic vesicles to encapsulate vitamin E acetate, one could find the trend with increased vesicle size, indicating that vitamin E acetate was successfully entrapped into the vesicular bilayers. Besides, the encapsulation of vitamin E acetate could significantly enhance the physical stability of the vesicles containing HTMA-DS, but only had limited effect on the physical stability of the vesicles containing TTMA-DS. As for the encapsulation efficiency, the encapsulation efficiency of TTMA-DS- containing vesicles for vitamin E acetate was slightly higher than that of HTMA-DS-containing vesicles. Because cholesterol was more hydrophobic than vitamin E acetate and could compete in inserting into the vesicular bilayers, the fraction of cholesterol in the vesicular bilayers might affect the ability of vesicles to encapsulate vitamin E acetate.
    This study also used the Franz diffusion cell to investigate the penetration behavior of vesicles and gelled vesicles through cellulose acetate membranes with different pore sizes. The results indicated that vesicles with an average size of 87nm could not penetrate through the cellulose acetate membranes with pore sizes of 100 and 200nm, but could penetrate through the membranes with a pore size of 400nm. The ability of the vesicles to penetrate through the membranes was decreased by gelling the vesicles with polymer carbopol940.

    總目錄 摘要 ………………………………………………………………………..i Abstract ……………………………………………………………………iii 誌謝 ……………………………………………………………………….. vi 總目錄 …………………………………………….…………………….…vii 表目錄 ………………………………………………………………...…...x 圖目錄 ……………………………………………………………………...xi 符號說明 ………………………………………………………………...xiv 第一章 緒論 ……………………………………………………………….1 1-1 前言…………………………………………………………….…1 1-2 研究動機與目的……………………………………………….…3 1-3 文獻回顧……………………….………………………………...4 1-3-1 離子對雙親分子…………………….………………………4 1-3-2 帶電液胞…………………….………………………………5 1-3-3 膽固醇的影響………………………….…………….….6 1-3-4 維他命E或維他命E醋酸酯的包覆……………………..…8 第二章 實驗……………………………………………………………….14 2-1 藥品……………………………………………………………...14 2-2 實驗儀器及裝置………………………………………………...14 2-2-1 超音波震盪分散裝置……………………………………...14 2-2-2 雷射光散射法粒徑及界面電位分析儀…………………...15 2-2-3 元素分析儀………………………………………………...17 2-2-4 高效能液相層析儀………………………………………...18 2-2-5 動態流變儀………………………………………………...18 2-2-6 穿透式電子顯微鏡………………………………………...19 2-3 實驗方法…………………………………………………………20 2-3-1 TTMA-DS的製備………………………………………….20 2-3-2 帶負電陰陽離子液胞的製備……………………………...21 2-3-3 帶負電陰陽離子液胞與高分子混合液的製備…………...21 2-3-4 粒徑分布及界面電位的量測……………………………...22 2-3-5 穿透式電子顯微鏡的分析………………………………...22 2-3-6 液胞經高分子膠化過後流變性質之量測………….……..23 2-3-7 維他命E醋酸酯包覆效率的計算…………………………23 2-3-8 螢光偏極化實驗…………………………………………...24 2-3-9 液胞對於膜孔洞大小之穿透性實驗……………………...25 第三章 結果與討論……………………...………………………………..37 3-1 帶負電陰陽離子液胞……………………………………………37 3-1-1 粒徑…………………………………………………………37 3-1-2 界面電位……………………………………………………38 3-1-3 物理穩定性…………………………………………………38 3-1-4 液胞雙層膜的流動性………………………………………39 3-2 膽固醇的影響……………………………………………………40 3-2-1 粒徑…………………………………………………………41 3-2-2 界面電位……………………………………………………42 3-2-3 TEM影像…………………………………………………...43 3-2-4 物理穩定性…………………………………………………43 3-2-5 液胞雙層膜的流動性………………………………………45 3-3 包覆維他命E醋酸酯的液胞.……………………………………46 3-4 液胞與高分子carbopol940的交互作用...………………………49 3-5 液胞對於膜孔洞大小之穿透性實驗…………………………....51 第四章 結論……………………………………………………………….76 參考文獻…………………………………………………………………...78 自述………………………………………………………………………...88 表目錄 表2-1 在亨利方程式(Henry equation)中,與 κa 對應的f(κa)值。…………………………………………………………………………… 26 表2-2 TTMA-DS 的元素分析結果。………………………………. 27 表3-1 不同組成之TTMA-DS、DHDP及膽固醇所製備出陰陽離子液胞分散液的初始平均粒徑(對應於強度最大的粒徑分布訊號)。…………………………………………………………. 53 表3-2 不同組成之TTMA-DS、DHDP及膽固醇所製備出陰陽離子液胞分散液的polydispersity index (PDI)值。…...………...… 54 表3-3 不同組成之HTMA-DS、DHDP及膽固醇所製備出陰陽離子液胞分散液的初始平均粒徑(對應於強度最大的粒徑分布訊號)。…………………………………………….…………… 55 表3-4 不同組成之TTMA-DS、DHDP及膽固醇所製備出陰陽離子液胞分散液的初始平均界面電位。…………………...……… 56 表3-5 在不同混合比例下,不同碳鏈數之IPA所形成液胞的粒徑穩定天數。………………………………………………………... 57 表3-6 不同組成之TTMA-DS、DHDP及膽固醇所製備出陰陽離子液胞分散液,包覆維他命E醋酸酯後的初始平均粒徑(對應於強度最大的粒徑分布訊號)。………………………………. 58 表3-7 不同組成之TTMA-DS、DHDP及膽固醇所製備陰陽離子液胞分散液,包覆維他命E醋酸酯後之粒徑穩定天數。..……… 59 圖目錄 圖1-1 單一雙層微脂粒結構的示意圖。….…………………………... 10 圖1-2 界面活性劑參數與對應的結構(Segota and Tezak, 2006)。... 11 圖1-3 膽固醇在微脂粒脂質膜中的排列方式(New, 1990)。……... 12 圖1-4 高於與低於相轉移溫度時,液胞膜結構的改變情形(Holmberg, 2002)。………………………………………….. 13 圖2-1 Nano ZS 雷射光散射法粒徑及界面電位測定儀的量測示意圖。.............................................28 圖2-2 低濃度或含小粒子的樣品在進行粒徑量測時,雷射光聚焦的位置會較靠近樣品池中間(左圖)。而高濃度或含大粒子的樣品在進行粒徑量測時,粒徑分析儀會使雷射光聚焦位置靠近壁面,以減少雷射光多重散射所造成的誤差。…………….. 29 圖2-3 高效能液相層析儀裝置圖。…………………..……………….. 30 圖2-4 動態流變儀: (a)儀器裝置 ; (b)錐板流變儀示意圖。….... 31 圖2-5 IPA 的製備流程。…………………………………………….. 32 圖2-6 強制性形成帶負電陰陽離子液胞的製備程序。…………….. 33 圖2-7 利用Oscillation Stress Sweep模式,找出落在線性之黏彈性範圍的剪應力(σ)示意圖。………………………………….……. 34 圖2-8 利用HPLC分析維他命E醋酸酯濃度的檢量線。……………… 35 圖2-9 Franz diffusion cell裝置圖。…………………………………… 36 圖3-1 上圖為無聚集體之樣品經過粒徑量測所得到的相關函數曲線,下圖則為當樣品具有大粒子或聚集體存在時,經過粒徑量測分析所得到的相關函數曲線。…………………………. 60 圖3-2 不同組成之TTMA-DS、DHDP及膽固醇所製備出陰陽離子液胞分散液的紅外光光譜分析(Tu, 2011)。…….……………... 61 圖3-3 不同組成之TTMA-DS、DHDP及膽固醇所製備出陰陽離子液胞分散液的平均初始粒徑。……………..…………………….. 62 圖3-4 TTMA-DS、DHDP及43 mol%膽固醇所製備之液胞粒徑分布隨時間的變化:(a)XDHDP = 0.5、(b)XDHDP = 0.3及(c)XDHDP = 0.1。……………..…………………………………………….. 63 圖3-5 不同組成之TTMA-DS、DHDP及膽固醇所製備出陰陽離子液胞分散液的平均界面電位。…………………………………… 64 圖3-6 TTMA-DS/DHDP/膽固醇=28/28/43系統之液胞分散液的(a)12萬倍及(b)40萬倍TEM影像。………………..……………… 65 圖3-7 TTMA-DS、DHDP及50 mol%膽固醇所製備之液胞粒徑分布隨時間的變化:(a)XDHDP = 0.5、(b)XDHDP = 0.3及(c)XDHDP = 0.1。………...…………………………………………………. 66 圖3-8 不同組成之TTMA-DS、DHDP及膽固醇所製備出陰陽離子液胞分散液的螢光偏極化分析結果。…………………………… 67 圖3-9 不同組成之TTMA-DS、DHDP及膽固醇所製備出陰陽離子液胞分散液,包覆維他命E醋酸酯後之初始粒徑。……................ 68 圖3-10 TTMA-DS、DHDP及43 mol%膽固醇所製備之液胞包覆維他命E醋酸酯後,粒徑分布隨時間的變化:(a)XDHDP = 0.5、(b)XDHDP = 0.3及(c)XDHDP = 0.1。……………………………..…. 69 圖3-11 TTMA-DS、DHDP及50mol%膽固醇所製備之液胞包覆維他命E醋酸酯後,粒徑分布隨時間的變化:(a)XDHDP = 0.5、(b)XDHDP = 0.3及(c)XDHDP = 0.1。………………………...….. 70 圖3-12 不同組成之TTMA-DS、DHDP及膽固醇所製備出陰陽離子液胞分散液,包覆維他命E醋酸酯之包覆效率。……………….. 71 圖3-13 不同組成之HTMA-DS、DHDP及膽固醇所製備出陰陽離子液胞分散液,包覆維他命E醋酸酯之包覆效率。………............ 72 圖3-14 不含液胞之高分子carbopol940的流變行為:(a)Ccarbopol940 = 0.1 wt%、(b)Ccarbopol940 = 0.3 wt%及(c)Ccarbopol940 = 0.5 wt%。…………………………………………... 73 圖3-15 不含液胞之高分子carbopol940及液胞分散液經高分子carbopol940膠化後之黏度與剪切速率的關係圖。…………… 74 圖3-16 不同組成之HTMA-DS/DHDP/43 mol%膽固醇製備出的液胞分散液經高分子carbopol940膠化後之G’(1Hz)值。…............. 75

    參考文獻

    Ahmad, I., Longenecker, M., Samuel, J., and Allen, T. M.,“Antibody-
    targeted delivery of doxorubicin entrapped in sterically stabilized
    liposomes can eradicate lung cancer in mice,” Cancer Research 55,
    1484-1487, 1993.
    Apel-Paz, M., Doncel, G. F., and Vanderlick, T. K., “Impact of membrane
    cholesterol content on the resistance of vesicles to surfactant attack,”
    Langmuir 21, 9843-9849, 2005.
    Bach, D., and Wachtel, E., “Phospholipid/cholesterol model membranes:
    formation of cholesterol crystallites,” Biochimica et Biophysica Acta
    1610, 187-197, 2003.
    Bhardwaj, U., and Burgess, D. J., “Physicochemical properties of extruded
    and non-extruded liposomes containing the hydrophobic drug dexamethasone,” International Journal of Pharmaceutics 388, 181-189,
    2010.
    Bhattacharya, S., De, S., and Subramanian, M., “Synthesis and vesicle
    formation from hybrid bolaphile/amphiphile ion-pairs. Evidence of
    membrane property modulation by molecular design,” Journal of
    Organic Chemistry 63, 7640-7651, 1998.
    Bhattacharya, S., and Haldar, J., “Interactions between cholesterol and lipids
    in bilayer membranes. Role of lipid headgroup and hydrocarbon
    chain-backbone linkage,” Biochimica et Biophysica Acta 1467, 39-53,
    2000.
    Bhattacharya, S., and Haldar, S., “Molecular design of surfactants to tailor
    its aggregation properties,” Colloids and Surfaces A: Physicochemical
    and Engineering Aspects 205, 119-126, 2002.
    Blanzat, M., Perez, E., Rico-Latters, R., Prome, D., Prome, J. C. and Lattes,
    A., “New catanionic glycolipids. 1. Synthesis, characterization, and
    biological activity of double-chain and gemini catanionic analogues of
    galactosylceramide(galβ1cer),” Langmuir 15, 6163-6169, 1999.
    Borochov, “Phase behavior of mixtures of cholesterol and saturated
    phosphatidylglycerols,” Chemistry and Physics of Lipids 76, 85-92,
    1995.
    Brasher, L. L., Herrington, K. L., and Kaler, E. W., “Electrostatic effects on
    the phase behavior of aqueous cetyltrimethylammonium bromide and
    sodium octyl sulfate mixtures with added sodium bromide,” Langmuir
    11, 4267-4277, 1995.
    Campbell, R. B., Balasubramanian, S. V., and Straubinger, R. M.,
    “Phospholipid-cationic lipid interactions: influences on membrane and
    vesicle properties,” Biochimica et Biophysica Acta 1512, 27-39, 2001.
    Carrion, F. J., Maza, A. D., and Parra, J. L., “The influence of ionic strength
    and lipid bilayer charge on the stability of liposomes,” Journal of Colloid and Interface Science 164, 78-87, 1994.
    Chien, C.-L., Yeh, S.-J., Yang, Y.-M., Chang, C.-H., and Maa, J.-R.,
    “Formation and encapsulation of catanionic vesicles,” Journal of the
    Chinese Colloid and Interface Society 24, 31-45, 2002.
    Chiruvolu, S., Israelachvili, J. N., Naranjo, E., Xu, Z., and Zasadzinski, J. A.,
    “Measurement of forces between spontaneous vesicle-forming
    bilayers,” Langmuir 11, 4256-4266, 1995.
    Chung, M. H., and Chung, Y. C., “Polymerized ion pair amphiphile that
    shows remarkable enhancement in encapsulation efficiency and very
    slow release of fluorescent markers,” Colloids and Surfaces B:
    Biointerfaces 24, 111-121, 2002.
    Chung, M. H., Park, M. J., Chun, B. C., and Chung, Y. C., “Encapsulation
    and permeation properties of the polymerized ion pair amphiphile vesicle that has an additional carboxyl group on anionic chain,”
    Colloids and Surfaces B: Biointerfaces 28, 83-93, 2003.
    Chung, M. H., Park, C., Chun, B. C., and Chung, Y. C., “Polymerized ion
    pair amphiphile vesicles with pH-sensitive transformation and controlled release property,”Colloids and Surfaces B: Biointerfaces 34,
    179-184, 2004.
    Eastman, S. J., Siegel, C., Tousignant, J., Smith, A. E., Cheng, S. H., and
    Scheule R. K., “Biophysical characterization of cationic lipid:DNA complexes,” Biochimica et Biophysica Acta 1325, 41-62, 1997.
    El Maghraby, G. M., Barry B.W., and Williams A.C., “Liposomes and skin:
    From drug delivery to model membranes,” European Journal of
    Pharmaceutical Sciences 34, 203-222, 2008.
    Fischer, A., Hebrant, M., and Tondre, C., “Glucose encapsulation in
    catanionic vesicles and kinetic study of the entrapment/release processes in the sodium dodecyl benzene sulfonate/cetyltrimethylam- monium tosylate/water system,” Journal of Colloid and Interface
    Science 248, 163-168, 2002.
    Fukuda, H., Kawata, K., and Okuda, H., “Bilayer-forming ion-pair
    amphiphiles from single-chain surfactants,” Journal of the American
    Chemical Society 112, 1635-1637, 1990.
    Gallarate, M., Chirio D., Trotta M., and Carlotti M. E., “Deformable
    liposomes as topical formulations containing α-tocopherol,” Journal
    of Dispersion Science and Technology 27, 703-713, 2006.
    Ganesan, M. G., Weiner, N. D., Flynn, G. L. and Ho, N. F. H., “Influence of
    liposomal drug entrapment on percutaneous absorption,” International Journal of Pharmaceutics 20, 139-154, 1984.
    Gunarsa, C. A., “含雙十六碳鏈磷酸鹽之陰陽離子液胞的物理穩定性及維
    他命E包覆效率,” 國立成功大學化學工程學系碩士論文,2010。
    Hincha, D. K., “Effects of a-tocopherol (vitamin E) on the stability and
    lipid dynamics of model membranes mimicking the lipid composition
    of plant chloroplast membranes,” FEBS Letters 582, 3687-3692,
    2008.
    Hirano, K., and Fukuda, H., “Polymerizable ion-paired amphiphiles,”
    Langmuir 7, 1045-1047, 1991.
    Ho, C., Slater S. J., and Subbs C.D. “Hydration and order in lipid bilayers,”
    Biochemistry 34, 6188-6195, 1995.
    Holmberg, K., Handbook of applied surface and colloid chemistry, John
    Wiley and Sons, England, 2, 45-54, 2002.
    Israelachvili, J. N., Mitchell, D. J., and Ninham, B. W., “Theory of
    self-assembly of hydrocarbon amphiphiles into micelles and bilayers,”Journal of the Chemical Society-Faraday Transactions 72, 1525, 1976.
    Jubeh, T. T., Barenholz, Y., and Rubinstein, A., “Differential adhesion of
    normal and inflamed rat colonic mucosa by charged liposomes,”
    Pharmaceutical Research 21, 447-453, 2004
    Kaler, E. W., Murthy-, A. K., Rodriguez, B. E., and Zasadzinski, A. N.,
    “Spontaneous vesicle formation in aqueous mixtures of single-tailed
    surfactants,” Science 245, 1371-1374, 1989.
    Lasic, D. D., “Liposomes: from physics to applications,” Elsevier, New
    York, 265-318, 1993.
    Lasic, D. D., and Papahadjopoulos, D., “Liposomes and biopolymers in drug
    and gene delivery,” Solid State and Materials Science 1, 392-400, 1996.
    Lasic, D. D., “Liposomes in gene delivery,” CRC Press, New York, 67-112,
    1997.
    Liu, D. Z., Chen, W. Y., Tasi, L. M., and Yang, S. P., “Microcalorimetric
    and shear studies on the effects of cholesterol on the physical stability of lipid vesicles,” Colloids and Surfaces A: Physicochemical and
    Engineering Aspects 172, 57-67, 2000.
    Manosroi, A., Wongtrakul P., Manosroi J., Sakai H., Sugawara F., Yuasa
    M., and Abe M. “Characterization of vesicles prepared with various
    non-ionic surfactants mixed with cholesterol,” Colloids and Surfaces
    B:Biointerfaces 30, 129-138, 2003.
    Marques, E. F., Regev O., Khan A., and Lindman B., “Self-organization
    of double-chained and pseudodouble-chained surfactants: counterion and geometry effects,” Advances in Colloid and Interface Science 100,
    83-104, 2003.
    McMullen, T. P. W., Lewis, N. A. H., and McElhaney, R. N., “Differential
    scanning calorimetric study of the effect of cholesterol on the
    thermotropic phase behavior of a homologous series of linear saturated
    phosphatidylcholines,” Biochemistry 32, 516-522, 1993.
    McMullen, T. P. W., Lewis, R. N. A. H., and McElhaney, R. N.,
    “Differential scanning calorimetric and fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes,” Biophysical Journal
    79, 2056-2065, 2000.
    Menger, F. M., Binder, W. H., and Keiper, J. S., “Cationic surfactants with
    counterions of glucuronate glycosides,” Langmuir 13, 3247-3250,
    1997.
    Miyajima, K., Komatsu, H., Sun, C. Q., Aoki, H., Handa, T., Xu, H. J., Fuji,
    K. R., and Okada, S., “Effects of cholesterol on the miscibility of
    synthetic glucosamine diesters in lipid bilayers and the entrapment of
    superoxide-dismutase into the positively charged liposomes,”
    Chemical and Pharmaceutical Bulletin 41, 1889-1894, 1993.
    Montenegro, L., Panico, A. M., Ventimiglia, A., and Bonina, F. P. “In
    vitro retinoic acid release and skin permeation from different liposome formulations,” International Journal of Pharmaceutics 133, 89-96,
    1996.
    New, R. R. C., “Liposomes: a practical approach,” Oxford University Press,
    New York, 1-32, 1990.
    Padamwar, M. N., and Pokharkar, V. B., “Development of vitamin loaded
    topical liposomal formulation using factorial design approach: drug
    deposition and stability,” International Journal of Pharmaceutics
    320, 37-44, 2006.
    Panda, A. K., Possmayer, F., Petersen, N. O., Nag, K., and Moulik, S. P.,
    “Physico-chemical studies on mixed oppositely charged surfactants:
    their uses in the preparation of surfactant ion selective membrane and
    monolayer behavior at the air water interface,” Colloids and Surfaces A: Physicochemistry and Engineering Aspects 264, 106-113, 2005.
    Saarinen-Savolainen, P., Jarvinen, T., Taipale, H., and Urtti, A., “Method for
    evaluating drug release from liposomes in sink conditions,” International Journal of Pharmaceutics 159, 27-33, 1997.
    Segota, S. and Tezak, D. “Spontaneous formation of vesicles,” Advances in
    Colloid and Interface Science 121, 51-75, 2006.
    Srivastava, S., Phadke R. S., Govil G., and Rao C. N. R., “Fluidity
    permeability and antioxidant behaviour of model membranes incorporated with [alpha] – tocopherol and vitamin E acetate,” Biochimica et Biophysica Acta - Biomembranes 734, 353-362, 1983.
    Tomasic, V., Stefanic, I., and Filipovic-Vincekovic, N., “Adsorption,
    association and precipitation in hexadecyltrimethylammonium
    bromide/sodium dodecyl sulfate mixtures,” Colloid and Polymer
    Science 277, 153-163, 1999.
    Touitou, E., Dayan, N., Bergelson, L., Godin, B., and Eliaz, M., “Ethosomes-
    novel vesicular carriers for enhanced delivery:characterization and skin penetration properties,” Journal of Controlled Release 65, 403- 418, 2000.
    Virden, J. W., and Berg, J. C., “NaCl-induced aggregation of
    dipalmitoylphosphatidylglycerol small unilamellar vesicles with varying amounts of incorporated cholesterol,” Langmuir 8, 1532- 1537, 1992.
    Walker, S. A., and Zasadzinski, A. J., “Electrostatic control of spontaneous
    vesicle aggregation,” Langmuir 13, 5076-5081, 1997.
    Yokouchi, Y., Tsunoda, T., Imura, T., Yamauchi, H., Yokoyama, S., Sakai,
    H., and Abe, M., “Effect of adsorption of bovine serum albumin on
    liposomal membrane characteristics,” Colloids and Surfaces B:
    Biointerfaces 20, 95-103, 2001.
    Yokoyama, S., Inagaki, A., Imura, T., Ohkubo, T., Tsubaki, N., Sakai, H.,
    and Abe, M., “Membrane properties of cationic liposomes composed of dipalmitoylphosphatidylcholine and dipalmityldimethylammonium
    bromide,” Colloids and Surfaces B: Biointerfaces 44, 204-210, 2005.
    Zhang, J. A., Anyarambhatla G., Ma L., Ugwu S., Xuan T., Sardone T., and
    Ahmad I., “ Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation,” European Journal of Pharmaceutics and Biopharmaceutics 59,
    177–187, 2005.
    李威漢,“陰陽離子界面活性劑的製備及其相轉移行為的熱卡分析,” 國
    立成功大學化學工程學系碩士論文,2010。
    李雅鈺,“含膽固醇之陰陽離子液胞穩定性及包覆行為的研究,” 國立成
    功大學化學工程學系碩士論文,2004。
    吳芷容,“利用帶正電的陰楊離子液胞做為DNA載體之可行性的研究,”
    國立成功大學化學工程學系碩士論文,2008。
    吳國彰,“陰陽離子液胞穩定性及包覆/釋放行為的研究,” 國立成功大
    學化學工程學系碩士論文,2006。
    林冠豪,“帶電的陰陽離子液胞之製備及物理穩定性研究,”國立成功
    大學化學工程學系碩士論文,2004。
    徐立銘,“陰陽離子液胞包覆行為之探討,” 國立成功大學化學工程學系
    碩士論文,2002。
    黃鉦琳,“帶電陰陽離子液胞的形成及其膠化之研究,” 國立成功大學
    化學工程學系碩士論文,2007。
    葉紹任,“共溶劑對陰陽離子液胞穩定性的影響,” 國立成功大學化學工
    程學系碩士論文,2003。
    廖怡芬,“長碳鏈醇類添加劑對帶電陰陽離子液胞物理穩定性的影響,”
    國立成功大學化學工程學系碩士論文,2006。
    簡振龍,“陰/陽離子界面活性劑的混合增效作用之研究,” 國立成功大
    學化學工程學系碩士論文,2000。

    下載圖示 校內:2013-08-04公開
    校外:2013-08-04公開
    QR CODE